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Abstract Among the most familiar sexual signals are red,
yellow, and orange sexual traits pigmented by carotenoids.
Many birds can detect near-ultraviolet (UV) light, and UV
signals can play key roles in mate choice. Grouse
(Tetraonidae) exhibit bright carotenoid-dependent sexual
ornaments, their supra-orbital combs, which to humans
appear orange-red. Combs also reflect in the UV, which is
not visible to humans but is likely to be visible to grouse. In
male red grouse Lagopus lagopus scoticus, we show that
comb UV reflectance decreases with increasing comb size
and redness. By removing the epidermis of combs, where
carotenoid pigments are, we show that the UV reflectance is
a property of the dermis, underneath the red pigmented
epidermis. Carotenoid pigmentation of combs acted as a
mask to reduce reflectance by the dermis in the range 400–
550 nm and in the UV, 300–400 nm. Patagium skin (non-
ornamental skin under the wing) also reflects in the UV, but
epidermis removal on this bare part tended to reduce UV

reflectance, whereas removal of the red epidermis of combs
increased UV reflectance. Males in better condition (greater
body mass relative to size) had bigger and redder combs,
but with less UV. Thus, carotenoid pigments of grouse
combs are deposited on a white background with significant
UV reflectance, which can influence how the signal is
perceived by conspecifics. Carotenoid-based traits exhibit
UV reflectance in a number of species, but how UV
reflectance and carotenoid pigmentation influence colour
remains little known for integumentary ornaments com-
pared to plumage traits. UV vision is not uncommon in
birds and other animals, so future studies should investigate
how UV reflectance influences the perception of caroten-
oid-based signals of quality.
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The brightly coloured ornaments exhibited by many bird
species have been shown to function as reliable signals of
quality, indicating better body condition or ability to resist
parasites (e.g. Hamilton and Zuk 1982; Andersson 1994).
Plumage colouration produced by feather structure and
pigmentation by melanins or carotenoids has received
particular attention (e.g. Hill and Brawner 1998; Badyaev
and Hill 2000; Møller et al. 2000; Shawkey and Hill 2005),
but birds also often possess brightly coloured fleshy
ornaments (e.g. Bortolotti et al. 1996; Buchholz 1997).
These ornaments, unlike feathers, can change colour within
days (e.g. Burley et al. 1992; Bortolotti et al. 2003) and
might thus be particularly important as indicators of current
condition or health. Carotenoids determine the bright reds,
yellows, and oranges of many sexual traits and are among
the most familiar targets of female choice (Hill 2002).
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Animals cannot synthesize carotenoids but must ingest
them, so diet may ultimately limit ornament expression
(Olson and Owens 1998; Hill et al. 2002). Carotenoids are
also important antioxidants and powerful immuno-stimu-
lants (Møller et al. 2000; Blount et al. 2003; Faivre et al.
2003). Individuals can allocate available carotenoids to
ornaments or self-maintenance, and the resulting trade-offs
may confer honesty on sexual signals (von Schantz et al.
1999; McGraw and Ardia 2003).

Many birds possess ultraviolet (UV) vision, and UV
signals may play key roles in sexual signalling and mate
choice (e.g. Bennett et al. 1996; Johnsen et al. 1998; Hunt
et al. 1999; Cuthill et al. 2000). Recent studies have
suggested a link between carotenoid-based colouration and
plumage (structural) reflectance, and the spectra of carot-
enoid-pigmented ornaments often exhibit a secondary
reflectance peak in the near UV (Burkhardt 1989; Bleiweiss
2004, 2005). There are also examples of traits other than
plumage that are carotenoid-dependent and have significant
UV reflectance, like the beaks of zebra finches Taeniopygia
guttata (Bennett et al. 1996), blackbirds Turdus merula
(Bright and Waas 2002) and mallards Anas platyrhynchos
(Peters et al. 2004), the gape of passerine nestlings (Hunt et
al. 2003), the combs of grouse (Mougeot et al. 2005a), and
the cere of raptors (Mougeot and Arroyo 2006). How UV
reflectance relates to carotenoid-based colouration has been
studied for plumage traits (e.g. Bleiweiss 2004, 2005;
Shawkey and Hill 2005) but remain largely unknown for
integumentary ornaments.

Tetraonid birds (grouse family) exhibit brightly coloured
supra-orbital combs that are particularly conspicuous sexual
signals (Johnsgard 1983; Fig. 1a). These fleshy orange-red
ornaments are pigmented by carotenoids (Hollett et al.
1984; Egeland et al. 1993). Combs also reflect in the UV
(Mougeot et al. 2005a), and behavioural experiments have
shown that grouse can see UV light (e.g. Siitari and Viitala
2002). In this study, we investigate the relationship between
UV reflectance and carotenoid-based colouration of grouse
combs and how both aspects relate to individual quality. We
first show that the combs of four tetraonids (red grouse
Lagopus lagopus scoticus, rock ptarmigan L. mutus, black
grouse Tetrao tetrix, and western capercaillie T. urogallus)
exhibit a bimodal pattern of reflectance, with a peak in the
UV and, another, in the red part of the spectrum. In red
grouse, we further analyse the relationships between male
comb size and reflectance and test whether the UV
reflectance is by the epidermal surface of combs, where
lipid soluble carotenoids are present in lipid droplets
(Hollett et al. 1984), or by the dermis, underneath the red
epidermis. Finally, we test for condition-dependence in
comb characteristics and investigate how sexual ornamen-
tation (comb size and reflectance) relates to numbers of an
important nematode parasite of red grouse.

Materials and methods

Data collection We sampled 60 red grouse that were shot
for sport on Edinglassie estate, a grouse moor in NE
Scotland, 12–27 August 2005. Grouse were sexed by
plumage and ornaments (Cramp and Simmons 1980), and
we randomly selected individuals from several dozen males
shot on a given day. For each, we measured the maximum
length (L) and width (W) of flattened combs (see Fig. 1a)
with a ruler (nearest 1 mm) and calculated comb area (comb
width×height) as a measure of ornament size (see Mougeot
and Redpath 2004; Mougeot et al. 2005b). We weighed
each bird (with a Pesola, to the nearest 5 g; males weighed
670±78 g; mean±SD, n=60) and measured wing length
with a ruler (to the nearest 1 mm) as a measure of size and
to calculate the condition index of body mass corrected for
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Fig. 1 a Portrait of a male red grouse showing the supra-orbital comb
and the comb measurements (L maximum length and W maximum
width); b reflectance patterns across the whole spectrum of light of the
combs of males of four grouse species (black grouse T. tetrix, rock
ptarmigan L. mutus, western capercaillie T. urogallus, and red grouse
L. lagopus scoticus). The grey area represents the near-UV, invisible
to humans
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size (see Mougeot et al. 2005c). All measurements were
taken by the same person (FM). After measurements, we
cut and stored the combs at −20°C to later measure colour
and removed a caecum and stored it in a cold room (at 4°C)
to later count parasites.

Colour measurements Within 2 months of collection,
we thawed the combs to measure their colour.
Previous work showed that freezing the combs for
this length of time did not affect the colour measure-
ments (Mougeot et al. 2005a). We measured spectral
reflection of the combs using a reflectance spectrometer.
After thawing, the comb was illuminated using a deuteri-
um-halogen light source (DH2000, Top Sensor System)
with a spectral range from 280 to 800 nm. Comb
reflectance was measured with a 45° to normal fibre-optic
that provides illumination from the light source and
transfers reflected light to the spectrometer (S2000).
Measurements were done in a partially dark room, and
the probe was placed against the comb surface, avoiding
the effect of ambient light. We converted the data into
digital information using a DAQ Card 700 and calculated
reflectance data relative to a Spectralon® 99% white
standard reference using the Spectrawin 3.1 software.
Reflectance values were obtained at 0.4-nm intervals
between 280 and 800 nm, enabling us to calculate the
percentage reflectance at each interval point. We took two
measures (one on each comb) for each male and used the
average reflectance from both combs for analyses. Previ-
ous work showed that colour variables (see below) were
repeatable within and between combs of the same bird
(see Mougeot et al. 2005a).

Colour variables We summarized comb reflectance by
calculating the following colour variables for each male
in the interval 300–700 nm, which is the range of avian
sensitivity (see Endler 1990): (1) total brightness (sum of
reflectance in the interval 300–700 nm); (2) UV chroma
(reflectance in the interval 300–400 nm, in percent,
relative to total brightness); (3) red chroma (reflectance
in the interval 600–700 nm, in percent, relative to total
brightness); (4) UV spectral location or λ RUV (wave-
length, λ, at which maximal reflectance was reached in the
UV interval, 300–400 nm; see Fig. 1b); (5) comb redness,
or λ Rvis50, as the wavelength of the reflectance midpoint
in the visible interval (wavelength at which reflectance is
halfway between its minimum, Rmin and its maximum,
Rmax; see Fig. 1b). Spectral locations are measures that
correspond to the human perception of hue. The total
brightness, UV chroma and red chroma measures, relate to
the amount of incident light that is reflected by the combs
across the whole spectrum, in the UV and in the red,
respectively.

Reflectance of bare parts with and without epidermis We
investigated whether the UV reflectance was a product of
the red epidermis of the combs or the dermis by carefully
removing the red epidermis of combs with a scalpel. As a
control, we also measured reflectance of the patagium with
and without epidermis. This area of skin under the wing
(triangular skin patch in between the arm bones) is the only
area of bare skin (other than combs) found in red grouse
and is not an ornament, as it has never been observed in
visual displays. We removed the epidermis by slowly
scraping the comb or surface of the patagium. For combs,
the removal of the epidermis removed the red colouration.
We used combs from 20 male red grouse and patagia from
eight male red grouse. We measured reflectance with the
spectrometer of intact combs or patagia (before manipu-
lation) and of the same parts without the epidermis. For
combs, we also measured the reflectance of the scraped red
epidermis material placed on a black background.

Carotenoids in red grouse combs It is known from several
grouse species that the visible colour of combs is due to
carotenoid pigmentation (Hollett et al. 1984; Egeland et al.
1993), but this had not been established for red grouse. To
ascertain that the red colouration of combs was also due to
carotenoid pigments in our study species, we first used a
simple chemical test that allows one to determine presence
of carotenoid pigments (see McGraw et al. 2005a).

We also used high-performance liquid chromatography
(HPLC) analysis to confirm that carotenoids were present
in red grouse combs. The carotenoids were extracted with
acetone following the procedures in Egeland et al. (1993).
HPLC was carried out at the Molecular Ecology Laboratory
of Doñana Biological Station using a Jasco PU-2089 Plus
instrument equipped with a quaternary pump (Jasco
Analítica Spain, S.L.). Carotenoid analyses were carried
out using a reverse phase C18 column (Phenomenex
Synergi, 4 μm) and a precolumn of the same material with
a particle size of 5 μm. Samples were pre-filtered using an
original equipment manufacturer filter Nylon (0.45–4 mm)
and later injected with a Rheodyne 7725i Valve equipped
with a 20-ml loop (Rheodyne, Rohnent Park, CA, USA).
The eluent system was as the one described in Mínguez-
Mosquera (1993) except that the flow rate was 1 ml min−1.
Data were acquired between 195 and 650 nm with a
multiwavelength detector MD-2010 Plus (Jasco Analítica
Spain, S.L.).

Quantification of carotenoids was performed using
reference cantaxanthin and lutein. Known dilutions of both
reference pigments were injected in the HPLC instrument to
build a calibration curve at 450 nm. Concentration of
individual carotenoids was calculated from HPLC areas
recorded at 450 nm (see Negro et al. 2001). We analysed
combs from five different males, each sampled twice.

Behav Ecol Sociobiol (2007) 61:741–751 743



Parasite counts The caecal threadworm Trichostrongylus
tenuis has a direct life cycle with no alternate host. T. tenuis
is known to have negative effects on the condition, energy,
fecundity, and survival of red grouse (Hudson 1986;
Delahay et al. 1995). Within 2–5 days after collection, we
estimated the number of nematodes per host using caecal
egg counts for 58 males (see Seivwright et al. 2004). T.
tenuis caecal egg concentration provides a reliable estimate
of the number of worms per host (Seivwright et al. 2004).

Statistical analyses We used SAS 8.01 (SAS, Statistical
Analysis System) for all analyses. When explaining varia-
tion in condition, we fitted (log transformed) body mass to
models and included wing length as a fixed effect (see
Darlington and Smulders 2001; García-Berthou 2001). We
calculated parasite load (number of worms per grouse) from
caecal egg concentration using equations in Seivwright et
al. (2004) and log-transformed parasite data for all analyses.
We used the Princomp procedure (SAS 2001) for the
principal components analysis of comb characteristics (size
and all colour variables detailed above). We used t-tests for
paired samples for differences in reflectance of combs or
patagia before and after the removal of the epidermis. All
tests are two tailed, and all data are given as mean±SD.

Results

Reflectance pattern of grouse combs Figure 1b shows the
reflectance patterns of combs of four tetraonids. All showed
a bimodal pattern, with a peak in the UV (300–400 nm)
and in the red (600–700 nm). We further investigated comb
reflectance variation in red grouse. In this species, males

with bigger combs had redder combs (greater 1λRvis50 and
red chroma), but UV chroma was negatively related to 1λ
Rvis50 and to comb size (Table 1). We further conducted a
principal components analysis of comb characteristics. The
first axis explained 41% of variation, with comb size, 1λ
Rvis50, red chroma, and total brightness having the highest
positive loadings. The second axis explained a further 34%
of variation, with UV chroma and total brightness having
the highest positive loadings (Table 1). The principal
components analysis confirmed a contrast between comb
size and redness, and UV reflectance.

Carotenoids in red grouse combs Chemical tests (McGraw
et al. 2005a) confirmed that carotenoids were present in the
combs of red grouse (n=3 samples tested, all positive) and,
in particular, in the red epidermal surface of combs (n=3
samples tested, all positive). The HPLC analyses also
confirmed that combs were pigmented by carotenoids
(Fig. 2). These included lutein, astaxanthin, and seven
other red carotenoid pigments of cenotic type (Table 2).
Canthaxanthin was not found in red grouse combs.

Carotenoid pigmentation and UV reflectance The principal
components analysis’ results and the negative relationship
between UV chroma and comb redness suggested an
antagonism between carotenoid pigmentation and UV
reflectance. We evaluated this further by testing whether
UV reflectance of combs was a property of the red
pigmented epidermis or the dermis of combs. By
removing the red epidermal surface of combs and
comparing comb reflectance with and without this layer,
it appeared that UV reflectance was by the dermis of
combs, which was pale and had little colour (Fig. 3a). UV
chroma by the dermis of combs (without red epidermal)

Table 1 Correlations between comb size and comb reflectance variables (Pearson correlations; n=60 males; significant correlation coefficients, at
the P=0.05 level, are highlighted in bold) and results of principal components analysis on size and reflectance variables

1λRuv 1λRvis50 UV chroma Red chroma Total brightness Principal components

First
component

Second
component

Third
component

Comb size +0.001 (ns) +0.606
(<0.001)

−0.399 (<0.01) +0.599
(<0.001)

+0.164 (ns) 0.456 −0.374 −0.058

1λRuv +0.027 (ns) +0.183 (ns) +0.215 (ns) +0.289 (<0.05) 0.195 0.246 0.946
1λRvis50 −0.379 (<0.01) +0.516

(<0.001)
0.089 (ns) 0.419 −0.385 0.036

UV chroma +0.102 (ns) +0.719 (<0.001) 0.059 0.656 −0.216
Red chroma +0.757 (<0.001) 0.604 0.050 −0.114
Total brightness 0.457 0.468 −0.199
Eigenvalues 2.46 2.04 0.87
Variance explained
—by each component 41.0% 34.1% 14.5%
—cumulative 41.0% 75.1% 89.6%
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was always greater than that of intact combs (t-test for
paired samples: t1,19=6.30; P<0.001; mean±SD difference
in UV chroma of 6.9±3.7%; n=20; Fig. 3a).

The patagium was pale with little colour and also
exhibited significant UV reflectance (peak in reflectance
in the interval 300–400 nm; Fig. 3b). When removing the
epidermis of the patagium, the patagium dermis underneath
also showed UV reflectance (Fig. 3b). Unlike combs,
however, UV chroma of the patagium dermis (without
epidermis) tended to be lower (not higher) than that of
intact patagia (mean±SD difference in UV chroma of −3.2
±5.5%; n=8; Fig. 3b), the difference being not statistically
significant (t-test for paired samples: t1,7=0.67; P>0.10).

We further tested whether the difference in UV chroma
between intact comb and dermis (without the red epidermis)

varied with comb redness of intact combs. If carotenoid
pigments act as a mask to UV reflectance by the dermis, then,
increased epidermal pigmentation of combs (redness) should
be associated with a greater reduction in UV reflectance.
Accordingly, we found that the difference in UV chroma
between intact combs and dermis increased with increasing
1λRvis50 (F1,18=17.39; P<0.001) and red chroma (F1,18=
8.55; P<0.01) of intact combs. In contrast, the difference in
UV chroma between intact combs and dermis was not
significantly related to 1λRUV (F1,18=3.33; P=0.09), UV
chroma (F1,18=0.60; P=0.44), or total brightness (F1,18=
0.00; P=0.94) of intact combs.

Condition and ornamentation We tested whether variation
in male body condition could be explained by comb

Table 2 Results of the HPLC analyses (carotenoid concentration, in microgram per gram) conducted on five male red grouse combs

Sample Lutein Astaxanthin Red 1 Red 2 Red 3 Red 4 Red 5 Red 6 Red 7 All

Comb 1a 6.68 17.47 3.44 66.86 3.49 6.51 8.80 3.12 0 116.36
Comb 1b 6.65 16.71 2.98 67.05 2.84 6.35 8.63 3.19 0 114.40
Comb 2a 18.52 45.17 6.35 116.57 6.53 10.11 10.62 4.37 0 218.25
Comb 2b 18.86 46.06 6.37 118.78 6.41 10.24 10.72 4.47 0 221.90
Comb 3a 16.89 34.88 6.43 146.14 13.32 23.97 32.52 18.91 9.14 302.22
Comb 3b 16.66 34.19 6.59 139.84 12.80 23.91 32.07 18.92 9.08 294.06
Comb 4a 16.15 31.93 5.28 129.96 9.90 20.46 33.85 18.62 7.69 273.83
Comb 4b 16.98 33.04 4.99 147.14 9.02 21.41 35.54 20.12 8.80 297.04
Comb 5a 8.84 21.19 3.29 65.63 2.96 6.67 9.02 4.82 1.79 124.22
Comb 5b 8.76 20.99 3.36 62.43 3.00 6.34 8.42 4.32 1.75 119.37

Each comb was sampled twice. Pigments Red 1–7 were red carotenoids of cenotic type that were not identified.

Fig. 2 Chromatogram of red
grouse comb carotenoid pig-
ments (X-axis time, in minutes;
Y-axis micro-absorbance units)
obtained from HPLC (see
Materials and methods). Values
at peaks refer to retention times
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characteristics. Body mass variation was significantly
explained by wing length (F1,59=36.99; P<0.001), so we
included wing length as a fixed effect in all models to
correct body mass for size (condition index). Univariate
analyses indicated that variation in male condition was
explained by comb size and red chroma but was not
significantly explained by 1λRUV, 1λRvis50, UV chroma,
or comb brightness (Table 3). Males in better condition had
bigger combs with greater red chroma and tended to have
less UV bright combs.

We also tested whether variation in male condition
could be predicted from comb characteristics as summa-
rized by principal components analysis (Table 1). After
controlling for wing length, variation in body mass was
significantly explained by PC1 (positive correlation; Fig. 4)

and PC2 (negative correlation), but not PC3 (Table 3). This
confirmed that better condition can be predicted from
bigger, redder combs (PC1) with less UV reflectance
(PC2).

Parasites, condition, and sexual ornamentation Males had,
on average, 951 T. tenuis worms (range 0–6,034 worms; n
=58). Parasite load was not related to body mass (F1,57=
0.77; P=0.39), but male condition (mass corrected for size)
was significantly positively related to T. tenuis load
(Table 3). Univariate analyses showed that T. tenuis load
had a significant positive correlation with comb size and
negatively correlated with UV chroma but was not
significantly related to red chroma, 1λRUV, 1λRvis50, or
total brightness (Table 3). When testing whether parasite
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load could be predicted from comb characteristics, we
found that variation in T. tenuis load was not significantly
explained by PC1 or PC3 but was explained by PC2
(negative correlation; Table 3). Thus, more worms were
predicted for males with larger and redder combs but with
less UV reflectance.

Discussion

Carotenoid pigmentation and UV reflectance

UV signals can play key roles in social and sexual
signalling, with males showing greater UV reflectance
being preferred (Johnsen et al. 1998; Hunt et al. 1999;
Cuthill et al. 2000). In this study, we have shown that UV
reflectance by a sexual ornament may not be independent
of its carotenoid-based pigmentation. This is important,
because carotenoid-based signals of quality are amongst the
commonest in birds, and their background reflectance, and
in particular UV reflectance, can influence how the signals
are perceived.

Recent work has shown that the colour of carotenoid-
bearing feathers is created both by reflection of light from
white structural tissue and absorption of light by caroten-
oids (Shawkey and Hill 2005). The fleshy ornaments of
grouse have an overall pale (white) background with
significant UV reflectance, and the epidermal carotenoid
pigmentation modifies this reflectance by absorption at

short visible wavelengths and in the near UV. The latter,
most likely, influences how receivers possessing UV vision
would perceive comb colour. Experiments have demon-
strated that black grouse can distinguish slight differences
in reflectance in the UV range and use UV vision for
foraging (Siitari and Viitala 2002). Given the sensitivity of
the UV cone of birds of the order Galliformes, to which
grouse belong, the red grouse should also be capable of
perceiving the UV variation in comb reflectance (Siitari and
Viitala 2002).

Male grouse with bigger and brighter combs are
typically more aggressive and preferred by females (e.g.
Bart and Earnst 1999; Rintamaki et al. 2000; Redpath et al.
2006). Combs are raised during social encounters as a
result of increased blood flow in comb capillaries (Hollett
et al. 1984). However, the intensity of visible colouration
does not increase when the combs are raised (see Hollett et
al. 1984), unlike the wattles of domestic fowl and red
jungle fowl Gallus gallus (Zuk et al. 1995). Thus, different
mechanisms are involved in grouse comb erection and
colouration (Hollett et al. 1984). The orange-red colour of
combs of western capercaillie, blue grouse Dendragapus
obscurus, and spruce grouse Falcipennis canadensis is due
to carotenoid pigmentation (Johnsgard 1983; Hollett et al.
1984), and our tests confirmed the same for red grouse. The
red colour of grouse combs originates from a zone of lipid
material within and directly below the epidermal surface,
where lipid-soluble carotenoids are present in lipid droplets
(Hollett et al. 1984). In western capercaillie, the main
carotenoids of combs have been identified as astaxanthin

Table 3 Summary statistics
for the regression analyses
(generalized linear models) of
condition (mass corrected for
size) and number of T. tenuis
parasites on comb character-
istics (univariate analyses on
each comb variables, and re-
gression on the first three axis,
PC1–3, of the principal com-
ponents analysis on comb
characteristics; see Table 1)

a The dependent variable is
body mass (in grams), and
wing length (millimetre) was
included as a fixed effect in all
analyses to analyse variation in
body mass corrected for size
(condition index).
b Parasite load (number of T.
tenuis worm per grouse) was
log-transformed (log10+1) for
all analyses.
Significant (P<0.05) predic-
tors are highlighted in bold.

Regression of X on Y Parameter estimate (slope±SE) F value df P value

Conditiona

Comb size 0.81±0.12 46.76 1.59 <0.001
Comb 1λRUV 0.54±1.46 0.14 1.59 0.71
Comb 1λRvis50 1.21±0.76 2.51 1.59 0.12
Comb UV chroma −5.60±2.97 3.56 1.59 0.06
Comb red chroma 6.68±2.06 10.51 1.59 <0.01
Comb brightness 3.53±4.08 0.75 1.59 0.39
PC1 19.61±4.62 18.03 1.55 <0.001
PC2 −13.04±4.58 8.10 1.55 <0.01
PC3 1.77±6.78 0.07 1.55 0.79
Parasite loadb

Comb size 0.016±0.005 7.13 1.57 <0.01
Comb 1λUV 0.052±0.064 0.65 1.57 0.43
Comb 1λRvis50 0.034±0.031 1.27 1.57 0.26
Comb UV chroma −0.350±0.124 7.92 1.57 <0.01
Comb red chroma 0.059±0.096 0.37 1.57 0.54
Comb brightness −0.215±0.181 1.42 1.57 0.24
PC1 0.302±0.208 2.09 1.54 0.15
PC2 −0.371±0.180 4.25 1.54 <0.05
PC3 0.541±0.334 2.63 1.54 0.11
Conditiona

Parasite loadb 5.95±2.93 4.13 1.57 <0.05
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and zeaxanthin, with also traces of adonixanthin and lutein
(Egeland et al. 1993). In red grouse combs, we also found
that astaxanthin and lutein pigments were present, as well
as seven other red carotenoid pigments of cenotic type
(Table 2). Canthaxanthin, which is commonly found in
birds, was not present in red grouse combs. Our results
confirmed that red grouse combs were also pigmented by
carotenoids.

Mechanisms underlying UV reflectance by non-plumage
(structural) ornaments remain little known compared to
those of plumage. In tanagers (Thraupini, Passeriformes),
the bimodal reflectance pattern of carotenoid bearing
feathers is the result of a strong absorption at short visible
wavelengths (380–550 nm) by carotenoids, with plumage
structure influencing the degree to which UV is reflected
(Bleiweiss 2004, 2005). In grouse, the carotenoid pig-
mented surface of combs strongly absorb reflectance in the
same interval (400–550 nm), and also, but to a lesser
extent, in the UV interval (300–400 nm; see Fig. 3a). The
reduction in UV chroma between dermis and pigmented
combs decreased with increasing comb redness, showing
that the carotenoid pigmentation acts as a mask that reduces
UV reflectance by the dermis of combs. We could not
distinguish between absorbance by pure carotenoid pig-
ments and that by the pigments within the epidermal cells,
so future work could investigate how the carotenoids
extracted from combs absorb light and align this with the

reflectance spectra obtained from intact combs and their
background.

UV reflectance was not restricted to combs, as we also
found it in another area of bare skin, the patagium underneath
the wing. More work is needed to understand how the dermis
reflects in the UV, and future studies could look for UV
reflecting structures in the dermis of grouse combs similar to
those recently discovered in the beak of Aptenodytes
penguins (see Dresp et al. 2005). As the patagium is not
displayed and does not function as a signal, it is unlikely
that the UV reflectance by the combs of grouse evolved as a
signal in itself. Depositing red carotenoid pigments on an
overall white and UV reflective surface might nevertheless
have evolved as a way to enhance the conspicuousness of
the signal. For humans, who do not see UV light, red
against white provides a striking contrast. For birds with UV
vision, a UV reflecting background might further influence
perception: low quality individuals, with less carotenoids
available for colouration, would leave more uncovered UV
reflective surface that would better expose this lack of
pigmentation. Another possibility is that carotenoids were
allocated to bare parts as a way of protecting skin from
photo damage, and that the carotenoid-based colouration of
these bare parts subsequently evolved as a signal of quality
(Bortolotti 2006). Carotenoids have photoprotective proper-
ties (Wynn-Williams and Edwards 2002) and have been
shown to protect skin against UV light-induced erythema
(Stahl and Sies 2002; Aust et al. 2005).

Comb size and reflectance as honest signals of quality

Honest signals of individual quality should be condition
dependent, so that only individuals in prime condition
exhibit the biggest or brightest ornaments (Andersson
1994). Accordingly, we found that males in better condition
had bigger and redder combs. Carotenoid-dependent orna-
ments might be honest indicators of quality because
animals cannot synthesize carotenoids and only good
foragers ingest enough carotenoids to show bright colour
(Hill et al. 2002). Thus, birds in better condition would
have more carotenoids to deposit in their ornaments. Red
grouse feed almost exclusively on heather Calluna vulgaris,
a plant of poor digestibility, so grouse have particularly
long caeca to maximize digestion (Moss 1972). T. tenuis
worms, which inhabit the caeca, also damage to the caecal
walls (Seivwright et al. 2004) and could interfere with
carotenoid absorption and, thereby, directly reduce carot-
enoid availability. Moreover, carotenoid absorption and
metabolism can be costly (Hill 2000; McGraw et al.
2005b), and individuals in poor body condition might have
a lower capacity to acquire carotenoids and to transform
them into the specific carotenoid pigments allocated to
ornaments. Because carotenoids are antioxidants and can

Fig. 4 Condition-dependence of comb characteristics as summarized
by the first axis of a principal components analysis on comb size and
reflectance (see Table 1). Male conditions are residuals from
generalized linear models of log(body mass) on log(wing length)
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directly boost the immune system, carotenoid-based colour
signals in birds may also directly signal male health (von
Schantz et al. 1999; McGraw and Ardia 2003). Diseased
and parasitized individuals would allocate fewer caroten-
oids to their ornaments because they need them as
antioxidants and for resisting parasites (e.g. Thompson et
al. 1997; Brawner et al. 2000).

The allocation of carotenoid pigments to ornaments may
be modulated by testosterone (Mundinger 1972; Owens and
Short 1995; McGraw et al. 2006). In red grouse, testoster-
one enhances both comb size (Mougeot et al. 2004, 2005b)
and redness, as bigger combs are also redder (this study).
Previous studies have shown no significant correlation
between comb size and T. tenuis load in male red grouse
(Mougeot et al. 2004; Mougeot and Redpath 2004).
However, experiments have shown that testosterone and
parasites interact in two ways in red grouse: elevated
testosterone increases T. tenuis load (Seivwright et al. 2005)
by increasing host susceptibility (Mougeot et al. 2005d),
and high parasite intensities can limit the expression of
testosterone-dependent comb size (Mougeot et al. 2005c).
Males in better condition had more T. tenuis parasites and
had bigger and redder combs but with less UV reflectance,
which was unexpected. Males with bigger and redder
combs might have been investing more in sexual or
territorial activities to the detriment of their parasite
defences, which could explain the positive relationship we
found. Males might be able to do so when parasite
intensities are low and do not impact on condition, as
found here (average<1,000 worms). At higher parasite
abundances, we would expect males with more parasites
and in poorer condition to show less carotenoid pigmenta-
tion and relatively more UV reflectance.

We showed that combs are complex sexual signals, with
a carotenoid-based pigmentation deposited on an overall
white background with UV reflectance. Whether UV
signals are special has been both advocated and criticized
(Banks 2001; Hausmann et al. 2003), but the role of the
UV waveband should be considered together with the rest
of the avian visible spectrum (Hunt et al. 2001). The UV
reflectance of grouse combs may influence how this
carotenoid-based signal is perceived.
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