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Carotenoids determine the yellow–red colours of
many ornaments, which often function as signals
of quality. Carotenoid-based signalling may
reliably advertise health and should be particu-
larly sensitive to parasite infections. Nematodes
are among the commonest parasites of
vertebrates, with well-documented negative
effects on their hosts. However, to date, little is
known about the effects that these parasites may
have on carotenoid-based signalling. Tetraonid
birds (grouse) exhibit supra-orbital combs,
which are bright integumentary ornaments pig-
mented by carotenoids. We tested the effect of the
nematode parasite Trichostrongylus tenuis on
signalling in free-living male red grouse Lagopus
lagopus scoticus. We show that experimentally
reduced nematode infection increases plasma
carotenoid concentration and comb redness,
demonstrating for the first time that nematodes
can influence carotenoid-based signals.
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1. INTRODUCTION
The brightly coloured ornaments of animals often

function as reliable signals of quality, indicating

better body condition or ability to resist parasites

(Hamilton & Zuk 1982). Carotenoid-based signals

are among the most familiar criteria for mate choice

(Hill & McGraw 2006). Identifying limiting factors

along the pathway from nutritional access to coloration

is essential for the understanding of how carotenoid-

based ornaments have evolved and are maintained as

honest signals (Hill & McGraw 2006). Vertebrates

cannot produce carotenoids, so carotenoid intake can

limit ornament expression (Olson & Owens 1998).

Carotenoids also have beneficial physiological func-

tions, being immunostimulants and antioxidants

(Møller et al. 2000). The trade-offs resulting from

carotenoid use in self-maintenance versus ornamenta-

tion may further confer honesty (Faivre et al. 2003).
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Carotenoid-based signals should be particularly sensi-
tive to parasites (Lozano 1994), though experimental
evidence remains limited (e.g. Hill & McGraw 2006).
For instance, coccidia can directly reduce carotenoid
uptake (Hõrak et al. 2004), and cestodes might
negatively influence carotenoid signalling (Figuerola
et al. 2005). Nematodes are common intestinal
parasites of vertebrates, and often have profound
effects on hosts (Wakelin 1978); however, their effects
on circulating carotenoids and carotenoid-dependent
ornamentation have never been tested experimentally.

We manipulated nematode parasites in male red
grouse and investigated the effects on carotenoid-
based signalling. Red grouse display red supra-orbital
combs pigmented by carotenoids (Mougeot et al.
2007) that function in intra- and inter-sexual
selection (Mougeot et al. 2004, 2007). Using an
anthelmintic drug, we reduced infection by
Trichostrongylus tenuis worms. This main parasite of
red grouse negatively impacts condition, productivity
and survival (Hudson 1986). We predicted a
reduction in T. tenuis would increase plasma caroten-
oids and the pigmentation of grouse combs.
2. MATERIAL AND METHODS
(a) Experiment

In autumn 2005 (16 October–1 November), we caught 37 males
on Edinglassie Estate, northeast Scotland (57812 0 N–3807 0 W).
Each was ringed, fitted with a radio collar (TW3-necklace tag,
Biotrack) and aged (young, i.e. hatched that summer or old).
Males were randomly assigned to one of two treatments: dosed
(parasite reduction) or control. After collecting faecal samples for
parasite counts, control males were given 1 ml oral dose of water,
and dosed males were given 1 ml of anthelmintic ( levamisole
hydrochloride, Nilverm Gold), a drug effective at reducing T. tenuis
(Hudson 1986). We recaptured 30 males 18G4 days after treat-
ment. Time between capture and recapture did not differ between
groups (general linear model, F1,26Z0.22, pZ0.643). At each
capture, we took a blood sample from the wing vein and a digital
photograph of the comb. Blood was centrifuged and plasma kept
frozen at K208C. Males were kept overnight in individual boxes to
collect faecal samples.

(b) Comb redness

High-resolution (2272!1704 pixels) pictures of the flattened comb
were taken at a standard distance (50 cm) using the flash of the
digital camera (Nikon Coolpix 4500). The same grey reference
chip was placed beside the comb for each picture. We analysed
digital images using ADOBE PHOTOSHOP v. 7.0, measuring the
average component of red (R) from the largest continuous area
within the combs and the grey reference using the RGB system (see
electronic supplementary material). Comb redness measures were
highly repeatable (see electronic supplementary material).

(c) Plasma carotenoid concentration

Carotenoids were quantified by diluting 60 ml of plasma in acetone
(1 : 10). The mixture was vortexed and centrifuged at 10 000 r.p.m.
for 10 min. The supernatant was examined in a ShimadzuUV-1603
spectrophotometer and we determined the optical density at 446 nm,
the wavelength of maximal absorbance for lutein (Mı́nguez-Mosquera
1993), the most common circulating carotenoid in birds (Hill &
McGraw 2006). This wavelength has been considered as a reliable
index of total carotenoids (Blount et al. 2003; McGraw et al. 2003).
Plasma carotenoid concentration (mg mlK1) was calculated using a
standard curve of lutein (Sigma Chemicals).

(d) Parasite abundance

We used faecal egg concentrations to estimate coccidia and T. tenuis
abundance. Samples were stored at 48C to inhibit egg development
and analysed within 5 days of collection to ensure reliable estimates
(Seivwright et al. 2004, see electronic supplementary material).

(e) Statistical analyses

We used SAS v. 9.1. Counts of coccidia eggs and T. tenuis worms
were fitted to generalized linear mixed models (GLMMs) using a
Poisson error distribution. Plasma carotenoid concentration and
comb redness were fitted to GLMMs using a normal distribution
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Figure 1. Relationships between comb redness and (a) plasma carotenoid concentration (mg mlK1). (b) T. tenuis abundance
(worms per grouse) before treatment.

Table 1. Effects of age, treatment and recapture on coccidia and T. tenuis abundance, plasma carotenoid concentration and
comb redness.

dependent variables
coccidia abundancea T. tenuis worm abundancea carotenoids comb rednessb

explanatory variables d.f. F p d.f. F p d.f. F p d.f. F p

age (A) 1,34.1 4.67 0.038 1,31.8 54.79 !0.001 1,24 0.47 0.498 1,24 0.02 0.879
treatment (T ) 1,33.7 0.50 0.486 1,26.8 5.28 0.030 1,24 0.18 0.675 1,24 0.04 0.842
recapture (R) 1,32.5 5.75 0.022 1,29.1 7.45 0.011 1,24 33.23 !0.001 1,24 2.51 0.126
T!R 1,33.8 0.17 0.686 1,15.6 8.59 0.010 1,24 4.37 0.046 1,24 14.50 0.019
A!T!R 4,17.3 0.24 0.835 4,15.4 1.94 0.311 4,15 1.71 0.200 4,21 1.12 0.372

a GLMM models were performed with Poisson error and log link function.
b For analyses of comb redness, all models including the R-value of the grey reference as a covariate (p!0.001).
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(Shapiro–Wilk tests, NS). When testing for treatment effects, we
included ‘individual’ as a random effect, to account for repeated
measures. We tested for differences between treatment groups in
changes over time of variables by including ‘recapture’ (before
versus after treatment), treatment (dosed versus control), age (old
and young) and their interactions as fixed effects. Trichostrongylus
tenuis and coccidia abundances were log transformed when
included as explanatory variables. For analyses of comb redness,
R-values were standardized using R-values from the grey reference,
included as a covariate in all models. All tests were two-tailed.
3. RESULTS
Before treatment, comb redness positively correlated
with circulating carotenoids (F2,33Z3.17, pZ0.084;
figure 1a), significantly so when parasites were included
as covariates (F1,29Z6.67, pZ0.015; T. tenuis, pZ
0.011 and coccidia, F1,29Z2.29, pZ0.141). Circulating
carotenoids tended to decrease with increasing coccidia
and T. tenuis intensities (F1,31Z3.41, pZ0.074 and
F1,31Z2.53, pZ0.122, respectively), significantly so
when comb redness was a covariate (coccidia, F1,29Z
6.13, pZ0.019 and T. tenuis, F1,29Z4.99, pZ0.033;
redness, F1,29Z6.67, pZ0.015; figure 1). Comb
redness correlated negatively with T. tenuis abundance
(F1,29Z7.49, pZ0.010; figure 1b). These relationships
did not differ between age groups (all pO0.38).

Before treatment, T. tenuis and coccidia preva-
lences were 89.2 and 100%, respectively. Old males
had more T. tenuis than young grouse (table 1).
Biol. Lett. (2007)
Trichostrongylus tenuis abundance decreased
significantly more in dosed than in control males
(table 1; figure 2a; see also table S1 in electronic
supplementary material) independently of bird age.
Coccidia abundance was not affected by treatment
(table 1). Young males had more coccidia than old
males before treatment, but changes over time in
abundance did not differ between treatment groups
(table 1), in both old and young birds.

Prior to treatment, plasma carotenoid concentration
did not differ between treatment and age groups (both
pO0.46). Circulating carotenoids increased significantly
more in dosed than in control birds (table 1, figure 2b),
in both young and old males. Comb redness also
increased significantly more in dosed than in control
birds (table 1; figure 2c and electronic supplementary
material) in both young and old males. Coccidia
abundance did not influence redness after controlling
for treatment effects (F1,17Z0.29, pZ0.669).
4. DISCUSSION
In untreated males, comb redness increased with
circulating carotenoids, significantly so when parasites
were taken into account. Thus, the relationship
between ornament coloration and circulating caroten-
oids, which has been found in several other species
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Figure 2. Mean (Gs.d.) changes in (a) T. tenuis abundance
(log transformed), (b) plasma carotenoid concentration and
(c) comb redness in control and dosed males. Sample sizes
above bars are shown.
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(Hill & McGraw 2006), was only revealed when
parasites provided the appropriate context. Similarly,
the negative relationships between carotenoid levels
and parasites were better understood when comb
colour was taken into account. The negative relation-
ships between both coccidia and T. tenuis parasites
and carotenoid levels suggested that both parasites
limited carotenoid-based signalling.
Biol. Lett. (2007)
Our treatment was effective at reducing T. tenuis
worms, increasing circulating carotenoids and ulti-

mately enhancing ornamental coloration. It is known

that other intestinal parasites, particularly coccidia

(McGraw & Hill 2000; Hõrak et al. 2004) influence

carotenoid-based signals in captive birds. Our anthel-

mintic treatment reduced nematode infection without

significantly affecting coccidia parasites. Our experi-

mental results were also consistent with the correla-

tive results, and both indicated that T. tenuis
nematodes reduce circulating carotenoids and redness

of the comb. We are thus confident that our results

indicate a negative effect of nematodes on plasma

carotenoids and on carotenoid-based ornamentation.

Despite a high prevalence, T. tenuis abundance was

low in our study, compared with the range observed

in red grouse (up to 30 000 worms, Hudson 1986).

Thus, even subtle variations in nematode infection

can affect ornamentation.

Nematodes can affect carotenoid signals in several,

non-exclusive ways. The thickening of the gut epi-

thelium caused by coccidiosis has been shown to

constrain carotenoid absorption (Allen 1987). Adult

nematodes inhabit the caeca of red grouse (Seivwright

et al. 2004) and cause significant damage to epithelial

tissues. Grouse have particularly long caeca to maxi-

mize digestion and absorption of plant nutrients.

Although we do not know if carotenoid absorption

takes place in the caeca, the caecal damage caused by

T. tenuis worms could constrain absorption and

explain the negative effect of nematodes on circulating

carotenoids. Trichostrongylus tenuis worms might also

reduce the production of high-density lipoproteins

and their incorporation into ornaments (McGraw

et al. 2006) or directly compete with the bird for

carotenoids (Mawson & Wakabongo 2002). Finally,

nematodes can also have other systemic effects on

carotenoid availability (Hill et al. 2004) as carotenoids

may be diverted to boost the immune system against

nematodes instead of being displayed in ornaments

(Møller et al. 2000; Blount et al. 2003).

Nematodes are among the commonest parasites of

vertebrates (Wakelin 1978), and have the potential to

reduce plasma carotenoid availability and carotenoid

use for ornamentation, as demonstrated by our

experiment. This should stimulate more experiments

on wild and captive animals, and more detailed

investigation of the mechanisms by which nematode

parasites influence carotenoid signals.
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