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Abstract
Background: An important component of sexual selection arises because females obtain viability
benefits for their offspring from their mate choice. Females choosing extra-pair fertilization
generally favor males with exaggerated secondary sexual characters, and extra-pair paternity
increases the variance in male reproductive success. Furthermore, females are assumed to benefit
from 'good genes' from extra-pair sires. How additive genetic variance in such viability genes is
maintained despite strong directional selection remains an evolutionary enigma. We propose that
sexual selection is associated with elevated mutation rates, changing the balance between mutation
and selection, thereby increasing variance in fitness and hence the benefits to be obtained from
good genes sexual selection. Two hypotheses may account for such elevated mutation: (1)
Increased sperm production associated with sperm competition may increase mutation rate. (2)
Mutator alleles increase mutation rates that are revealed by the expression of condition-dependent
secondary sexual characters used by choosy females during their mate choice. M Petrie has
independently developed the idea that mutator alleles may account for the maintenance of genetic
variation in viability despite strong directional selection.

Results: A comparative study of birds revealed a positive correlation between mutation rate at
minisatellite loci and extra-pair paternity, but not between mutation rate and relative testes mass
which is a measure of relative sperm production. Minisatellite mutation rates were not related to
longevity, suggesting a meiotic rather than a mitotic origin of mutations.

Conclusion: We found evidence of increased mutation rate in species with more intense sexual
selection. Increased mutation was not associated with increased sperm production, and we suggest
that species with intense sexual selection may maintain elevated mutation rates because sexual
selection continuously benefits viability alleles expressed in condition-dependent characters. Sexual
selection may increase mutational input, which in turn feeds back on sexual selection because of
increased variance in viability traits.

Background
Sexual selection arises from competition among individu-

als of the chosen sex for access to individuals of the
choosy sex, and females (usually the choosy sex) may
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either obtain direct or indirect fitness benefits from their
mate choice [1]. Indirect fitness benefits may consist of ge-
netically based attractiveness of sons or genetic viability of
offspring [e. g., [2,3]]. The maintenance of indirect fitness
benefits in the presence of directional selection by choosy
females poses a theoretical problem [1,4–6], because
characters subject to directional selection tend to become
fixed leaving little genetic variation. However, empirical
studies indicate that genetic variation is a very small, but
overall highly significant component of fitness [7]. The
mean heritability estimate of fitness weighted by sample
size is 0.138 [7–9]. Even very small heritabilities of fitness
can be extremely important for maintaining female pref-
erences for good genes on an evolutionary time scale.

Genetic variability in fitness may mainly be maintained
by mutations, which usually have slightly deleterious ef-
fects [review in [10]]. Mutation rates in sexually reproduc-
ing organisms may be minimized because associations
between mutability genes and beneficial genetic variants
tend to be broken up by recombination [11]. Sex results
in recombination disrupting associations between muta-
tor alleles and beneficial alleles arising due to mutation,
the only factor maintaining associations being strong
linkage [12,13]. Such hitch-hiking effects will only remain
in a population until the beneficial allele has gone to fix-
ation. However, mutation rate may be greater in species
with intense sexual selection. Here, we propose two alter-
native hypotheses for the evolution of elevated mutation
rates in sexually reproducing organisms. (1) Intense
sperm competition may lead to an elevated male muta-
tion rate. (2) Intense sexual selection may result in bene-
ficial viability alleles being expressed in condition-
dependent secondary sexual characters.

Sperm competition may maintain high mutation rates for
two different reasons. First, increased sperm production is
preceded by an increase in the number of mitotic germ-
line cell divisions in the testes, likely resulting in a higher
number of replication-dependent mutations per genera-
tion. This observed difference in mutation rate between
the sexes [14–16] is likely to be due to similar differences
in germline mitoses. Secondly, increased germline mitotic
and meiotic rates may constrain the fidelity of replication,
repair or recombination. Thus, mutational input for via-
bility traits may increase as a direct consequence of in-
tense sperm competition, and this may suffice to maintain
genetic variability in fitness.

The second hypothesis suggests that under intense direc-
tional sexual selection elevated mutation rates can be
maintained through mutator alleles if the sexual selection
process continuously favours individuals carrying the
beneficial viability alleles. Strong linkage between muta-
tor alleles and beneficial alleles may not be necessary in

this situation because most mutants are removed each
generation due to skew in mating success caused by the in-
tense sexual selection. The reason is that males carrying
mutations obtain few or no matings. Therefore, females
may be able to continuously choose mates with high, ge-
netically based viability. That is the case if the variability
in expression of secondary sexual characters increases
with the mutational input, and if most deleterious mu-
tants are lost each generation due to strong skew in male
mating success caused by the effects of mate choice. Thus,
the only requirements for such a mechanism to work is
that good genes sexual selection is important, and that a
considerable amount of variance in fitness is due to muta-
tion. Similar arguments have been put forward for the ev-
olution of sex [17,18].

Sperm competition is an important component of sexual
selection [19]. Numerous studies of paternity have shown
that the expression of secondary sexual characters is the
single-most important correlate of paternity in birds [re-
view in [20]]. Furthermore, extra-pair paternity generally
increases the variance in male mating success considera-
bly, since males successful in siring offspring in their own
nest also are successful at other nests, as shown in several
specific studies [e. g., [21–23]]. Thus, there is a general in-
crease in the standardized variance in male success caused
by extra-pair paternity, and this variance is directly related
to the expression of secondary sexual characters [review in
[24]].

Here we describe (1) patterns of the relationship between
mutation rate and extra-pair paternity, a component of
sexual selection, by (i) investigating the relationship be-
tween minisatellite mutation rates and the frequency of
extra-pair paternity in birds. (ii) We investigate whether
intense sperm competition preceded or followed the evo-
lution of high levels of genetic variability. (iii) We investi-
gate the relationship between mutation rate and relative
testes size as a measure of sperm production. (iv) We in-
vestigate the relationship between mutation rate and lon-
gevity across species to determine whether the increased
mutation rate in certain species is simply caused by a
greater average age of males in such species. (2) In the dis-
cussion we describe the potential mechanisms accounting
for those patterns, and (3) we briefly discuss the evolu-
tionary implications of these patterns.

Methods
Data sets
Information on extra-pair paternity, minisatellite muta-
tion rates per band and generation, minisatellite probes,
body mass, sexual dichromatism and survival rate were
obtained from the literature (data set and sources are re-
ported in the Appendix [See Additional file: 1]). Mutation
rate estimates were not confounded by estimates of extra-
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pair paternity since paternity exclusion routinely has been
based on both a large number (usually at least three) of
novel minisatellite bands with respect to the putative fa-
ther, but not the putative mother, and a low band sharing
coefficient with the putative father, but not the putative
mother. Whenever possible we calculated the mutation
rate based on the number of novel bands and the average
number of bands scored in the study for the offspring that
were not extra-pair offspring. The latter precaution was
taken since a single or few novel band(s) in an individual
due to mutation cannot readily be distinguished among a
large number of novel bands due to extra-pair paternity.
As an illustration of this approach we provide the calcula-
tions based on two studies. Westneat [25] estimated extra-
pair paternity in the indigo bunting Passerina cyanea. He
reported paternity for a total of 63 offspring of which 22
were considered to be fathered by extra-pair males based
on a large number of novel bands (on average 8.2 novel
bands) and low band sharing coefficients with the pre-
sumed father, but not the mother. Of the remaining 41
nestlings, 28 had 0 novel bands, 10 had one novel band
and 3 had two novel bands, in total 16 novel bands. The
mean number of bands scored per individual was 37.5
bands, which gives 41 × 37.5 = 1537.5 bands for these off-
spring. Mutation rate is therefore 16 / 1537.5 = 0.010407
in this study. Negro et al. [26] reported extra-pair paternity
in the lesser kestrel Falco naumanni for 87 nestlings of
which 3 were extra-pair offspring with four unmatched
bands with the father. Among the remaining 84 nestlings
there were three cases of a single novel band. Since the
number of bands scored was on average 10.9 per individ-
ual, mutation rate was 3 / (10.9 × 84) = 0.003277. If mul-
tiple mutation estimates were available for a single
species, a mean estimate weighted by sample size was
used in the analyses. Minisatellite mutation rates had a
significant repeatability [27] among populations of the
same species of 0.76 (F = 7.41, d.f. = 7,10, P = 0.0027).
Mutation rates were also significantly repeatable among
probes for the same population (R = 0.65, F = 4.75, d.f. =
8,9, P = 0.016). There were no significant differences in
mutation rates depending on type of restriction enzymes
used (Alu: F = 0.04, d.f. = 1,60, P = 0.83; Hae: F = 0.001,
d.f. = 1,60, P = 0.97) or minimum size of fragments scored
(F = 1.45, d.f. = 1,60, P = 0.23). There was no significant
difference in mutation rate between different molecular
laboratories (F = 1.46, d.f. = 35,41, P = 0.12). Likewise,
there was no temporal change in mutation rate with year
of publication, as expected if techniques improved with
time (r = 0.10, t = 0.90, P = 0.37).

Extra-pair paternity was defined as the percentage of off-
spring sired by males other than the attending male. For
species with cooperative breeding systems, extra-pair pa-
ternity was defined as the percentage of offspring sired by
males other than the attending males. This definition was

justified since, for example, dunnocks Prunella modularis
have a high degree of shared paternity in polygynandrous
groups, but no extra-pair paternity in monogamous
groups [28]. In addition, most extra-pair paternity in co-
operative groups of superb fairy wrens Malurus cyaneus is
caused by extra-group males with a preferred phenotype,
while within group males hardly account for any extra-
pair paternity [29]. If sexual selection was driving multiple
mating by females, we should also expect female dun-
nocks in monogamous groups to engage in extra-pair cop-
ulations. They do not. In addition, shared paternity
among multiple males within a group will decrease rather
than increase the variance in male mating success, causing
a reduction in the intensity of sexual selection. However,
female superb fairy wrens engage in extra-pair copulations
independent of group composition. These observations
suggest that mixed paternity within groups of cooperative
breeders is unrelated to sexual selection, but is caused by
within-group competition for paternity. Extra-pair pater-
nity estimates had a highly significant repeatability [27] of
0.68 [30], even though several species showed marked in-
traspecific variation in extra-pair paternity.

Sexual dichromatism was estimated as the difference be-
tween mean male and female color score in the visual
spectrum made by three independent scorers based on in-
spection of field guides [31,32]. Such scores are repeatable
among scorers, and correlate with extra-pair paternity in
birds [30–32].

Testes mass for adult birds from the main breeding season
were obtained from [33] and unpublished information.

Survival rate was estimated as the annual adult survival
rate from detailed population studies (data reported in
the Appendix [See Additional file: 1]).

A second data set on genetic variation and extra-pair pater-
nity is fully reported in [30].

Comparative methods
We investigated the relationship between mutation rate
and extra-pair paternity using a maximum likelihood test
analysing the relationship between two continuous char-
acters [34]. This method implemented in the computer
program Continuous (available at http://
www.ams.rdg.ac.uk/zoology/pagel/mppubs.html) al-
lows one to test the hypothesis that two continuous char-
acters co-evolve and to test whether the changes in one
character precede those in another, all while taking ac-
count of the phylogenetic relationships. The proportion
of extra-pair paternity was squareroot-arcsine-trans-
formed, mutation rate was log10(x + 0.001)-transformed,
testes mass and body mass were log10-transformed and
survival rate was squareroot-arcsine-transformed. The
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correlation between the two variables [34] was calculated
from a phylogenetic hypothesis of birds (Fig. 1). This hy-
pothesis was a composite phylogeny based on informa-
tion in the following references [35–38].

We tested for an association between mutation rate and
the proportion of polymorphic allozyme loci, respective-
ly, and extra-pair paternity. This was done by investigating
whether transitions to higher mutation rates and a larger

Figure 1
Phylogenetic relationships between the bird species with information on mutation rate and extra-pair paternity. Adapted from 
[31–34].
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proportion of polymorphic loci preceded or followed
transitions to more frequent extra-pair paternity using a
continuous time Markov model with the computer pro-
gram Continuous [34]. The phylogeny for this analysis is
given in Fig. 2.

Results
Minisatellite mutation rates derived from paternity stud-
ies were significantly positively related to sexual selection,
as estimated from extra-pair paternity (Fig. 3). A phyloge-
netic correlation analysis revealed that mutation rates
were positively related to extra-pair paternity (in likeli-
hood ratio = 3.07, d.f. = 1, P = 0.013). The estimated phy-
logenetically corrected correlation was 0.279, thus
accounting for 7.8% of the variance. The data suggested
that extra-pair paternity had a smaller variance (0.01289)
than the mutation rate (0.04749). Regressions of variables
onto path length (the length of path in the phylogeny in
Fig. 1) provides information on the rate of change in the
variable in question. Regressions of the two variables onto
path length revealed the following regression models: Mu-
tation rate = -2.553 + 0.041 Path length and Extra-pair pa-
ternity = 0.133 + 0.012 Path length. Both of these
regression coefficients were small and of a similar magni-
tude, which makes it difficult to determine which variable
was changing first. These conclusions were independent
of any particular phylogeny since we obtained qualitative-
ly similar results with a standard taxonomy [39].

Interspecific variation in sexual dichromatism has arisen
by sexual selection and is positively correlated with extra-
pair paternity in several comparative studies [30–32], and
extra-pair paternity has been predicted to be related to
adult survivorship [40]. The effect of extra-pair paternity
on mutation rate while controlling for sexual dichroma-
tism in a multiple regression analysis did not affect the
previous conclusion, since the correlation between muta-
tion rate and extra-pair paternity gave a likelihood ratio =
3.42, d.f. = 1, P = 0.0089. The estimated phylogenetically
corrected correlation coefficient was 0.293, thus account-
ing for 8.6% of the variance.

Relative testes mass, calculated as residuals from a regres-
sion of log-transformed testes mass on log-transformed
body mass, was not significantly correlated with mutation
rate: ln likelihood ratio = 0.36, d.f. = 1, P = 0.39. The esti-
mated phylogenetically corrected correlation coefficient
was 0.105. This conclusion was insensitive to outliers
since an analysis base on ranked values gave a similar
result (ln likelihood ratio = 0.28, d.f. = 1, P = 0.45, esti-
mated phylogenetically corrected correlation coefficient =
0.093). The conclusion was independent of a particular
phylogeny since we obtained similar results with the
standard taxonomy [39]. Testes mass controlled for body
mass is correlated with sperm production rate in

mammals [41], although similar data are unavailable for
other taxa.

A previous study of extra-pair paternity in birds revealed
more frequent extra-pair paternity in species with a high
genetic variability [30]. A temporal order test [42] demon-
strated that an increase in extra-pair paternity preceded an
increase in genetic variability as estimated from the fre-
quency of polymorphic allozyme loci. This analysis was
prompted by a previous study that unable to distinguish
between the order of evolution of extra-pair paternity and
genetic variability [30]. The positive correlation found in
the previous study was corroborated using the phyloge-
netic correlation analysis, which was positive and signifi-
cant (ln likelihood ratio = 2.65, d.f. = 1, P = 0.021,
estimated phylogenetically corrected correlation coeffi-
cient = 0.375). Regressions of the two variables onto path
length revealed the following regression models: Poly-
morphism = 0.455 - 0.002 Path length and Extra-pair pa-
ternity = 0.053 + 0.045 Path length. This implies that
extra-pair paternity have changed much more rapidly with
path length than polymorphism, although the variance in
extra-pair paternity was only slightly larger than the vari-
ance in polymorphism. It is more likely that the variable
that changes more is also the one that changed first. Wat-
terson & Guess [43] have shown theoretically that the
most common neutral alleles tend to be the oldest, sup-
porting our interpretation that the variable that changes
more is also the one that changed first. Thus an increase in
extra-pair paternity is likely to generate greater genetic
variability.

Minisatellite mutation rates were not higher in long-lived
than in short-lived species. Mutation rate was not
significantly related to adult survival rate corrected for the
effects of allometry based on a phylogenetically corrected
estimate (ln likelihood ratio = 1.07, d.f. = 1, P = 0.14).
This is contrary to the prediction based on the hypothesis
that differences in mutation rates among species were due
to germline mutations accumulating during lifetime
[44,45]. The estimate of the phylogenetically corrected
correlation coefficient was 0.174.

Discussion
The lek paradox arises from the observation that females
are often very choosy in their mate choice, even when
there are no apparent material benefits to be obtained
from such a choice [3,5]. Genetic benefits of mate choice
have the theoretical difficulty that any highly beneficial al-
lele rapidly will go to fixation [3,4]. However, fitness itself
seems to have a small, but highly significant heritability
[7–9], and estimates of the magnitude of genetic benefits
obtained by females also seem generally to be important
[46]. Since mechanisms that generate new genetic varia-
bility must balance the rate at which alleles go to fixation,
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Figure 2
Phylogenetic relationships of bird species with information on extra-pair paternity and the frequency of polymorphic loci. 
Adapted from [26].
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the maintenance of large amounts of genetic variability
for fitness must be addressed. Although mechanisms that
maintain significant additive genetic variance in fitness
have been proposed [e. g., [3]], it remains unknown to
which extent they suffice to account for the relatively large
heritabilities of fitness [7].

In this paper we have shown that there is a positive corre-
lation of an intermediate effect size between a measure of
sexual selection (extra-pair paternity) and mutation rate
for near neutral molecular markers (minisatellites) (Fig.
3). Estimates of minisatellite mutation rates showed sta-
tistically significant repeatabilities among populations,
but also among probes used in single population samples.
Thus, the data used for the present study provided reliable
estimates. This is the first comparative demonstration of a
significant predictor of mutation rates of any genetic sys-
tem in any group of organisms, and such a novel pattern
is interesting in itself independent of the exact
mechanisms proposed. The novel pattern reported here
suggests that mutational input is not necessarily inde-

pendent of the intensity of sexual selection, but that it
may even increase with an increasing intensity of sperm
competition. An analysis of extra-pair paternity and genet-
ic variability in birds, using the proportion of polymor-
phic loci as an estimate of genetic variability, also
demonstrated a positive relationship between sexual se-
lection and genetic variability. Furthermore, this analysis
indicated that it was extra-pair paternity that evolved first,
followed by a change in genetic variation. This finding
suggests that sexual selection initially may be related to
good genes effects, and that sexual selection subsequently
may be driving the evolution of genetic variability
through an increase in germline mutation rate, rather than
vice versa. Rather than depleting genetic variation in good
genes, sexual selection may increase such genetic variabil-
ity through an increase in germline mutation rate. If mu-
tational input is dependent on the intensity of sexual
selection, as indicated by the present study, this provides
a novel mechanism that may help resolve the lek paradox.

Figure 3
Minisatellite mutation rate in relation to extra-pair paternity for birds, with each data point representing a species. The data-
base is available in the Appendix.
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Extra-pair paternity has been shown to increase the stand-
ardised variance in male reproductive success within own
nests by on average a factor 5.19 across a sample of 8 spe-
cies of birds, with a maximum value of 15.20 [24]. While
this suggests that sperm competition increases at least one
component of variance in male mating success in these
species, obviously we cannot know if that is the case in all
species. If extra-pair paternity has evolved for reasons
other than sexual selection, for which there is little or no
empirical evidence [review in [24]], these additional fac-
tors would only increase the level of noise in the relation-
ship between mutation rate and extra-pair paternity. Thus,
the estimate of the relationship between mutation rate
and sexual selection reported here is likely to be
conservative. However, positive relationships between
sexual dichromatism and the rate of extra-pair paternity
across species of birds suggest that the expression of sec-
ondary sexual characters has coevolved with extra-pair pa-
ternity [32].

We proposed two alternative hypotheses for the evolution
of elevated mutation rates. Sperm competition generally
results in an increase in sperm production rates and size
of ejaculates [41,47–50,52], since males may win at sperm
competition by providing more sperm than competitors
[52–55]. How does an increase in sperm production relate
to minisatellite mutation rates in birds? The most straight-
forward connection is that the minisatellite mutation rate
is positively correlated with the number of germline cell
divisions, due to mutations during replication. Indeed,
most human minisatellite loci show a strong male-biased
mutation rate [56–58], as do avian minisatellites [59,60].
However, sequence analyses of human minisatellite mu-
tations unravel inter-allelic recombination or gene con-
version-like events, most likely of meiotic origin [61–64].
A meiotic mechanism may also govern mutations in avian
minisatellites, since mutation rates were unrelated to
longevity. Studies of humans and mice indicate various
mechanisms [65], suggesting that replication, repair or re-
combination may be more error-prone when mitotic and
meiotic rates are elevated. However, we found no signifi-
cant relationship between minisatellite mutation rate and
the relative size of testes (Fig. 4). Thus, it is possible that
factors unrelated to replication are responsible for the ob-
served positive relationships between minisatellite muta-
tion rates and sperm competition.

The second hypothesis is that linkage between mutator al-
leles and beneficial alleles arising though mutation may
allow females to continuously select more viable males as
expressed in their condition-dependent secondary sexual
characters. This hypothesis can account for the association
between mutation rate and sexual selection. It is also con-
sistent with sex-biased mutation rates for minisatellites,
and the lack of association between survival rate and mu-

tation. This hypothesis cannot be rejected with available
data.

The increased mutation rates among species with frequent
extra-pair paternity, suggests that mutational input may
increase in species subject to intense sexual selection as a
direct consequence of sperm competition. Most minisat-
ellite loci have little or no effect on phenotype [66], and
they thus offer nothing directly on which females may
base their mate choice. Since minisatellite mutation rates
are correlated with extra-pair paternity, then standard mu-
tations (which are often replication dependent) should
show a greater effect on the expression of secondary sexual
characters. Therefore, there is no reason to assume that an
increased mutation rate is restricted to neutral genetic
markers such a minisatellites.

The observation that sexual selection is particularly in-
tense in birds with a high minisatellite mutation rate has
implications for the resolution of the lek paradox of how
females can choose mates for indirect fitness benefits
without alleles going to fixation [5,6]. Our analyses indi-
cate that the balance between mutation and sexual selec-
tion is not constant, as previously assumed, since
mutational input for minisatellites, and, therefore, pre-
sumably also for other parts of the genome, is positively
correlated with the intensity of sexual selection arising
from sperm competition. Hence selection of mates based
on indirect fitness benefits can be maintained perhaps not
because of the presence of "good" genes, but because fe-
males are attempting to avoid "bad" genes arising from
deleterious mutations as expressed in condition-depend-
ent secondary sexual characters. Females may be able to
chose sexual partners with reduced levels of mutagenesis
by having evolved preferences for males with signals
based on antioxidants such as carotenoids. Carotenoids
are often involved in sexual signalling, but they also play
an important role for high quality sperm [67]. Hence, fe-
males may choose the partner with the lowest level of mu-
tagenesis by preferring males with the most exaggerated
carotenoid-based signals, resulting in the maintenance of
high mutation rates. This effect of sexual selection related
to deleterious mutations with viability effects may be
widespread, as sperm competition occurs commonly in
many animal taxa [19], and similar phenomena are re-
ported from other kingdoms.

Conclusions
We tested the hypothesis that sexual selection is associat-
ed with increased germline mutation rates, using a com-
parative analysis of a data set for minisatellite mutation
rates in birds. Species with more intense sexual selection
as revealed by higher levels of extra-pair paternity had sig-
nificantly elevated mutation rates, accounting for more
than 10% of the variance. We found no evidence of muta-
Page 8 of 11
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tion rate being related to relative testes mass, which re-
flects sperm production rate. In addition, we found no
evidence of mutation rates being higher in species with
higher survival rates. These observations suggest that the
increased mutation rate in species with intense sperm
competition has a meiotic basis. An analysis of extra-pair
paternity and genetic variability in birds, using the pro-
portion of polymorphic loci as an estimate of genetic var-
iability, indicated that extra-pair paternity changed before
there was a change in genetic variation. Thus, sexual selec-
tion may be driving the evolution of genetic variability,
presumably through an increased mutation rate. High
mutation rates are associated with sexual selection, and
they may be maintained through mate choice for sires
with extravagantly expressed secondary sexual characters
reliably revealing beneficial viability alleles.
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Figure 4
Minisatellite mutation rate in relation to residual testes mass (residuals from a regression of log10-transformed testes mass on 
log10-transformed body mass) for birds, with each data point representing a species. The database is available in the Appendix.
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