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Diagnosis of land condition is a basic prerequisite for finding the degradation of a territory under climatic
and human pressures leading to desertification. Ecosystemic approaches, such as the one presented here,
address ecosystem maturity or resilience. They are low cost, not very prone to error propagation and well-
suited to implementation on remotely sensed time–series data covering large areas. The purposes of this
work were to develop a land condition surveillance methodology based on the amount of biomass produced
per unit rainfall, and to test it on the Iberian Peninsula.
In this article, we propose parallel and complementary synchronic assessment and diachronic monitoring
procedures to overcome the paradox of monitoring as a sequence of assessments. This is intrinsically
contradictory when dealing with complex landscape mosaics, as relative estimators commonly produced for
assessment are often difficult to set in a meaningful time sequence. Our approach is built on monthly time–
series of two types of data, a vegetation density estimator (Green Vegetation Fraction-GVF) derived from
Global Environmental Monitoring satellite archives, and corresponding interpolated climate fields. Rain Use
Efficiency (RUE) is computed on two time scales to generate assessment classes. This enables detrended
comparisons across different climate zones and provides automatic detection of reference areas to obtain
relative RUE. The monitoring procedure uses raw GVF change rates over time and aridity in a stepwise
regression to generate subclasses of discriminated trends for those drivers. The results of assessment and
monitoring are then combined to yield the land condition diagnostics through explicit rules that associate
their respective categories.
The approach was tested in the Iberian Peninsula for the period 1989 to 2000 using monthly GVF images
derived from the 1-km MEDOKADS archive based on the NOAA-AVHRR sensors, and a corresponding archive
of climate variables. The resulting land condition was validated against independent data from the Natura
2000 network of conservation reserves. In very general terms, land was found to be healthier than expected,
with localised spots of ongoing degradation that were associated with current or recent intensive land use.
Static or positive vegetation growth rates were detected almost everywhere, including Mediterranean areas
that had undergone increased aridification during the study period. Interestingly, degrading or static trends
prevailed in degraded or unusually degraded land, whereas trends to improve were most represented in land
in good or unusually good condition.
l rights reserved.
© 2010 Elsevier Inc. All rights reserved.
1. Introduction

The land degradation concept aims at covering a range of climate
and human-induced processes leading to a decline in soil potential to
sustain plant productivity. The first attempt to produce a global
assessment occurred at the end of the last century, resulting in the
Global Assessment of Soil Degradation (GLASOD) (Oldeman et al.,
1991). GLASOD was a qualitative assessment, largely based on expert
judgement that distinguished the main processes leading to soil
degradation, such as water and wind erosion–sedimentation, soil and
water salinisation, loss of soil organic carbon and nutrients, loss of soil
structure, etc. The GLASOD database was used in the preparation of
the World Atlas of Desertification (UNEP, 1992).

Later on, the GLASOD approach was upgraded in a new worldwide
project entitled Land Degradation Assessment in Drylands (LADA,
2006) sponsored by the United Nations Environment Program, the
Global Environmental Facility and the Food and Agricultural Organi-
zation. Whilst retaining the original GLASOD soil degradation cat-
egories, LADA took a step forward by aiming at quantitative
deliverables. This was achieved by including socio-economic drivers
and by enlarging its scope to carbon balance and biodiversity as
components of the functional land system and its degradation.

A third global initiative with implications for land degradation
assessment was the Millennium Ecosystem Assessment (MA) devel-
oped from 2001 through 2005. Its desertification synthesis (Adeel
et al., 2005) evaluates the status of desertification in drylands by
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asking key questions and providing answers based exclusively on the
reports generated for the MA. It yields a consistent picture of links
between land degradation, global change and biodiversity loss. It also
includes guidelines for improving assessment and monitoring
approaches by accounting for the role of human action and climate
variability.

The three aforementioned projects reveal a historical trend of
increasing complexity in approaches to land degradation assessment,
which go from considering effects on ‘soil’ to explicitly including
drivers on ‘land’, to being more concerned with global interaction of
desertification with the atmospheric system through changes in land
surface properties, and wide-scale effects on downstream delivery of
water and sediments due to changes in hillslope to channel
connectivity. This trend has largely been propelled by the United
Nations Convention to Combat Desertification (UNCCD) 1994 defini-
tion of desertification as ‘The land degradation in arid and semi-arid
and dry-sub-humid areas resulting from various factors, including
climatic variations and human activities’. This definition, in spite of its
generality and simplicity, has the advantage of providing a benchmark
for designing assessment and diagnostic methods. The outcome or
symptom of desertification is land degradation, and its driving forces
are climate variation and human activities. Furthermore, land
degradation is defined by the UNCCD as ‘the loss of land's biological
and economic productivity and complexity’. This is a holistic
definition that focuses on the overall impact rather than on particular
causes like soil erosion, salinisation, etc.

Whilst retaining that holistic character of the land degradation
concept, we propose an ecosystemic approach evolved from the
original UNCCD definition, in which, land condition becomes the key
to interaction between biophysical and human systems in the desert-
ification process. There are several ecosystem attributes that can be
associated with ecosystem maturity or complexity. In this context, a
landscape's long-term capacity to retain, utilise and recycle local
resources, and to buffer environmental changes, provides an objective
basis for assessing its ecological functionality or condition.

Procedures based on this approach are relatively unsophisticated.
They provide process-based indices that work by measuring the
deviation in land condition status between any particular location and
a reference one. They therefore demand few data, are low cost, not
very prone to error propagation and well-suited to implementation
on remotely sensed time–series data for application to large areas.
One of such procedures is described here.

The main purpose of this project was to develop a land condition
diagnostics methodology for large territories during a given time
period. The target user profile was specified as a national or
international institution building an information support system for
a national desertification plan, or the UNCCD. The requirements were
the following: i) an operational definition of land condition to be
based on ecologically interpretable functions; ii) input data from
already existing, generally available sources; iii) objective and
repeatable procedures, leading to consistent results, even if found
by different teams; and iv) results connecting explicit technical
elements of land condition with lay understanding of desertification.
The Iberian Peninsula was an ideal benchmark for this kind of
approach because it combines a suite of land degradation syndromes
that spread over wide climate gradients. Therefore, a second purpose
was to apply and validate the proposed diagnostic method in that
territory.

The Compact Oxford English Dictionary (Soanes & Stevenson,
2005) defines assessment as “evaluation or estimation”, and moni-
toring as “to keep under observation, especially as to regulate, record
or control”. It is a common assumption in environmental science that
monitoring can be built on assessments repeated over time. However,
this is true only if the boundary conditions under which assessments
are made remain constant. Climate is a boundary condition for land
degradation. A changing climate may lead to different assessments
even if land condition remains constant. In this work, the term
assessment therefore refers to the synchronic estimation of land
condition made over a relatively long time period, and the term
monitoring refers to the diachronic observation of vegetation trends
during the same period. This period should be long enough to collect a
representative sample of vegetation performance. The combination of
assessment and monitoring results is thus expected to yield
meaningful land condition diagnostics.

2. Data

2.1. Study area, period and resolutions

The Iberian Peninsula is occupied by Portugal and Spain and extends
over ca. 581,000 km2 (Fig. 1). It is a rugged country criss-crossed by
mountain ranges, many of their divides exceeding 2000 m.a.s.l.
Enclosed by them, two large central plateaus and some tectonic basins
define the main drainage network, which includes several rivers over
500 km long. Synoptic air masses create a NW to SE precipitation
gradient, ranging from Atlantic humid climate zones on the north and
west coasts, to pure Mediterranean on the east coast, the SE corner
becoming the most arid zone of Europe. Indicative total annual
precipitation in those extremes is 1600 and 140 mm/year, respectively.
In addition, altitudinal temperature and precipitation gradients are
associated with the main mountain ranges, creating a genuinely alpine
climate in the Pyrenees, and well distributed extra-zonal belts of
humidity elsewhere.

The Iberian Peninsula has a mosaic of land cover that includes
significant areas of traditional and newly developed agriculture (49%
of land), embedded in a matrix of natural and semi-natural vegetation
(47% of land) (EEA, 2007). The former includes most of the present-
day active desertification hot spots, whilst somewhat stabilized areas
of inherited desertification associated with historical processes since
the 15th century are well represented in the latter (Puigdefabregas &
Mendizabal, 1998).

The period of analysis was intended to reflect a fair range of mid-
term vegetation performance. Two practical conditions were formu-
lated for its selection: i) only complete years to be used because the
methodology is partly based on yearly summaries; and ii) only
complete fields within the period (i.e. no gaps to be filled using
statistical techniques) to meet both the applied and the methodolog-
ical goals. Continuity of the time–series input was not strictly required
as long as some yearly sequences were included and eventual gaps
were grouped discretely in between. Years were defined in a manner
similar to the meteorological convention reflecting the progression of
hydrological and ecological seasons. Hydrological years encompass
whole annual pulses that include the season of maximum soil
moisture recharge and conclude with the season of maximum
evapotranspiration (Glickman, 2000). Summer is relatively dry in
most of the Iberian Peninsula, and first precipitations after the warm
period usually fall in September. That reason is why the definition
used for hydrological year throughout this study is from 1 September
to 31 August.

The period of analysis was set as September 1989 through August
2000 to maximize the continuity of a vegetation and climate input
data time–series whilst containing full hydrological years. A failure of
the National Oceanic and Atmospheric Administration-Advanced Very
High Resolution Radiometer (NOAA-AVHRR) at the end of 1994
and consequently missing input data for the derivation of Green
Vegetation Fraction estimates resulted in a gap from August 1994 to
January 1995 in the Green Vegetation Fraction time–series (see the
next section). Because hydrological years are from September to
August, data from both 1993–94 and 1994–95 had to be excluded.
Therefore the number of whole years available for calculation was
limited to 9. The climatic representativeness of these years is dis-
cussed below in the description of the climate archive. Nevertheless,



Fig. 1. Location and main geographic features of the Iberian Peninsula. a) Dominant relief patterns. b) Mean annual aridity, 1970–2000. UNEP classes are shown: arid (ARD), semi-
arid (SAR), dry subhumid (DSH), wet subhumid (WSH), and wet (WET). c)Mean monthly vegetation density, 1989–2000. Green Vegetation Fraction shown is for a reference range
of 1 to 100. d) Natura 2000 network in continental Spain (N2000), showing the distribution of Sites of Community Interest (SCI).
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that period immediately follows the accession of Portugal and Spain to
the European Economic Community in 1986, and their ratification of
the Treaty of the European Union in 1992. The important changes
required in both countries for their adaptation were reflected in their
respective landscapes and therefore make a suitable framework for
this study. The spatial and temporal resolutions necessary to capture
those changes were 1000 m and 1 month respectively.

2.2. Green vegetation fraction

The approach presented needs a consistent and reliable time–
series archive of a proxy for net primary productivity, such as
vegetation surrogates from remote sensing data. Satellite data files
with coarse geometric, but high temporal resolution, have been
successfully employed for monitoring vegetation at a regional to
global scale (Goetz et al., 2006; Tucker & Nicholson, 1999). Due to
their high repetition rate these data provide better geographical
coverage and temporal monitoring at the expense of spatial detail. At
present, NOAA-AVHRR sensors provide the most comprehensive
time–series of satellite measured surrogates for regional-scale surface
conditions. The Normalized Difference Vegetation Index (NDVI)
which is derived from the reflectance bands in the red and near
infrared domain is a commonly accepted surrogate for vegetation
cover, volume and vitality (e.g. Hielkema et al., 1987; Myneni et al.,
1997; Tucker, 1979).

However, the NDVI is known to be influenced by soil and rock
background (Price, 1993). Furthermore, it is sensitive to parameters
such as atmospheric conditions due to aerosol properties and
concentration and gaseous components, illumination, and the
observation geometry, although this is supposedly partly eliminated
by temporal maximum-value compositing of the data (Holben, 1986).
Moreover, NDVI values are platform-dependant due to different
spectral properties as well as the observation geometry, which
complicates direct comparison of different sensors. The time–series
archive used in this study is based on an unmixing approach making
use of the well-known relationship of vegetation cover and surface
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temperature (Ts) and overcomes some of the limitations of the NDVI.
It is based on the observation that under dry conditions the land
surface temperature is inversely proportional to the amount of
vegetation canopy cover and thus, the NDVI. This is due to a variety
of factors including latent heat transfer through evapotranspiration,
lower heat capacity and thermal inertia of vegetation compared to soil
(Choudhury, 1989; Goward & Hope, 1989). Whilst on a small spatial
scale the variation in vegetation species and soil classes may show
high variability (Choudhury, 1989), a coarse geometric resolution
shows the variation in surface temperature to bemainly caused by the
vegetation fraction (Nemani et al., 1993). As there are local gradients
related to altitude and exposure, temperature variation due to soil
moisture, variable evaporation and evapotranspiration respectively,
and remaining cloud artefacts (e.g. Lambin & Ehrlich, 1996; Sandholt
et al., 2002), the feature space covers a triangle or trapezoid. This
feature space, amongst others, has been used for deriving parameters
like soil moisture content (e.g. Chuvieco et al., 2004; Nemani et al.,
1993; Sandholt et al., 2002) and improving land cover classification
(Lambin & Ehrlich, 1997). The linear unmixing approach derives
Green Vegetation Fraction (GVF) from the triangle described above.
The three vertices were derived and served as endmembers (full
vegetation cover, dry soil and the ‘cold’ endmember representing the
wet edge of the triangle) to unmix the feature space, thereby deriving
GVF estimates (Stellmes et al., 2005; Weissteiner et al., 2008). The
relationship between NDVI and Ts as described above develops only
under stable atmospheric conditions, which are often present in semi-
arid to arid areas, especially from spring to autumn. This approach, if
such conditions were not given, would cause a bias in the estimated
GVF. This constraint was accounted for by labeling data which did not
fulfill the prerequisite as ‘no data’. A detailed description of the
technical implementation of the NDVI-Ts unmixing approach and
derivation of GVF can be found in Stellmes et al. (2005) and
Weissteiner et al. (2008) .

The NOAA AVHRR Archive used to derive the GVF is the
“MediterraneanExtendedDailyOneKmAVHRRData Set” (MEDOKADS)
processed and distributed by the Free University of Berlin (Koslowsky,
1996). The MEDOKADS archive, which covers the period from 1989 to
2005 and is delivered as 10-day composites, comprises full resolution
AVHRR channel data, NDVI, Ts and additional auxiliary data with a
geometric resolution of about 1 km2. This includes correction for sensor
degradation and orbital drift effects that cause non-linear changes in the
signal measured, as well as inter-calibration between the AVHRR/2
(NOAA 11 and NOAA 14) and AVHRR/3 (NOAA 16) sensors to prevent
inhomogeneities in the time–series. A detailed description of data pre-
processing may be found in Koslowsky (1996, 1998) and Friedrich and
Koslowsky (2009). Ts is derived by the split window approach (Coll &
Caselles, 1997; Coll et al., 1994) and normalized to the time of the local
sun zenith plus 1 h and 42min (Billing, 2007).

2.3. Climate archive

The climate time–series was extracted from an archive of monthly
fields of meanmaximum,mean andmeanminimum air temperatures,
and of total precipitation, generated for 1970–2000 for the Iberian
Peninsula. This archive was interpolated from monthly summaries of
georeferenced meteorological stations throughout the territory. Data
for Portugal were downloaded from the Portuguese Water Resources
Information System (http://snirh.pt, accessed January 2010) and
complemented with series from AgriBase (Instituto Superior de
Agronomia). Data for Spain were received from the Spanish State
Agency of Meteorology. Gaps in the data fields were not filled in using
statistical techniques. Station monthly summaries were computed
only for stations with less than 5 days of missing data for the
corresponding month, and interpolation for any given month was
done using only stations with complete monthly summaries for the
corresponding year. This resulted in variable networks of input
stations for each surface, averaging 390 and 1877 points for
temperature and precipitation surfaces respectively. In addition to
these, approximately 10% of stations were reserved to enable cross-
validation of the resulting surface.

Interpolationwas done using thin-plate smoothing as implemented in
ANUSPLIN(Hutchinson, 1995), anaccepted technique to interpolatenoisy
multivariate data such as climatic variables, which has performed well
in comparisons with other spatial interpolation methods (Hutchinson &
Gessler, 1994; Jarvis & Stuart, 2001; Price et al., 2000). Latitude, longitude
and altitude were specified as covariates for surface fitting. Temperature
data were input raw, but precipitationwas transformed to its square root
during the interpolation to reduce skewness. The finest resolution of the
thin plate smoothing surfaces was 3 arc-min, which was then registered
to a 1000 m grid.

ANUSPLIN generates internal statistics that can be used to assess the
quality of any fitted surface. The Square Root of the Mean Square Error
(RTMSE) is a true estimator of the overall interpolation error. It is an
absolute error in the same units as the original variable, but its ratio to
themean produces a relative error that is related to the predictive error
of the interpolated surface. The degrees of freedom of the fitted surface
are estimated through the signal. This parameter ranges from zero to
the number of data points. Extremes are interpreted as failed spatial
optimisation, from either under or overfitting, whilst around half the
number of data points are considered appropriate (Price et al., 2000).
Smooth transitions of signal fromonemonth to thenext are an indicator
of the absence of systematic errors.

The signal to data point ratio was below 50% for temperature
surfaces, with many values between 25% and 35%. This suggests
limitations in the number of input data points whichmay have resulted
in a loss of detail on the interpolated surfaces. This is not necessarily bad
in terms of broad spatial patterns, but it does indicate that absolute
predictions should be usedwith caution for finemicroclimatic patterns.
Mean maximum temperature signals are higher in summer, and mean
minimum temperatures in winter, suggesting that the corresponding
surfaces have at least partially succeeded in reflecting the complex
patterns associated with the main relief mesoforms of the Iberian
Peninsula. For precipitation, the signal to data point ratio was around
50%, which can be considered appropriate, although again, slightly on
the low side because the admissible range only extends to 80% for this
variable. Both temperature and precipitation series show uniform
signals, which we interpret as a combination of the regional influences
of climate. Smooth signal transitions betweenmonths reflect absence of
bias.

The RTMSE was lower than 1 °C for all temperatures. The highest
error in the mean maximum temperatures was 0.85 °C in the peak
summer months, and mean minimum temperatures tended to
concentrate the highest errors up to 0.73 °C in late summer and
autumn. This probably adds to the previous interpretation concerning
excessive smoothing of the respective surfaces. Absolute errors in
precipitation did range from 4.41 mm in July to 12.82 mm in
December, but the seasonal pattern of prediction errors was inverse
and corresponded to 24% and 13% respectively.

Those results can be compared to others using the same
interpolation technique. Yan et al. (2005) found RTMSEs of 0.42 to
0.83 °C for temperature surfaces, and 2 to 15 mm for precipitation
surfaces interpolated for China, the latter with predictive errors
ranging from 8 to 15%. And the findings of McKenney et al. (2006),
working on Canada and United States, in general less than 1.5 °C for
temperature, and 20 to 40% for precipitation, were also comparable.

Precipitation is a critical factor in this study, and the climate
archive described above can provide some insight on the represen-
tativeness of the hydrological years in the 1989–2000 study period
compared to the 1970–2000 reference period. The reference mean
annual precipitation for the whole Iberian Peninsula is 705 mm.
Compared to this, the driest years in the study period were 1998–99
(−28%), 1994–95 (−22%) and 1992–93 (−16%). The wettest years
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were 1995–96 (+28%), 1996–97 (+19%) and 1997–98 (+18%).
These figures are only indicative, but in addition to the temporal
variability they suggest, wide spatial variation is also associated with
geographic gradients in this large, complex study area. This can be
checked using individual maps of standardised residuals that show
how much each location departs from its own mean during the
reference period in any given year (Fig. 2). Two important conclusions
may be drawn from those maps. First, a year that is not especially
anomalous when precipitation is averaged over the whole area can
still contain extreme deviations for individual locations. This occurred
in 1989–90, which although it was only 7% wetter overall, still shows
wide contrasts between locations that received much more or much
less precipitation than their respective local average. And second,
local extreme deviations do not necessarily occur in the overall driest
years. For example, the driest year in a zone in the Northern Plateau
was 1991–92 with precipitation of approximately 2.3 standard
deviations below the local mean, and this is well below the
precipitations received in 1998–99 and 1994–95, which were −1.2
and −0.6 standard deviations respectively.

The methodology applied in this work relies on the detection of
vegetation performance under spatial and temporal ranges of climatic
conditions. From this point of view, the main requirement for input
data is the availability of a wide spectrum of variability in local
precipitation rather than over the whole study area. The 9 years used
in this work encompass a fair representation of such variability given
the elements discussed in the preceding paragraph. Whilst it
obviously would have been preferable to include 1993–94 and
1994–95, these years do not contain unique or extreme features
that would prevent safe application of this approach.
Fig. 2. Representativeness of the period of analysis (1989–2000) in the precipitation referenc
annual precipitation in the reference period. b) through l) Yearly departures from the loca
excluded from the analysis and are highlighted in red.
2.4. Other complementary data

Three additional data sets were used in this work. The Global 30
Arc-Second Elevation Dataset (GTOPO30) (EROS, 1996) was used as
an indirect source of topographic data for generation of the GVF and
the climate archives. COoRdinate INformation on the Environment
(CORINE) is a programme managed by the European Environment
Agency (EEA, 2007) to provide consistent information on land cover
and land cover changes in Europe at a spatial scale of 1:100,000 with a
decadal temporal resolution. The editions for the reference years 1990
(abbreviated CLC1990) and 2000 (abbreviated CLC2000)were used in
the selection of input data and as an external control to assist in
interpreting the results. Finally, the subset for continental Spain
(MARM, 2006) of the Natura 2000 network, established in 1992 (EEC,
1992) to provide a coherent structure for nature protection areas
across the European Union, was used for validating the results. These
data sets are described as necessary in the corresponding sections
below.

3. Methods

The diagnostic procedure involves independent assessment and
monitoring components that operate on the same database. On the
one hand, the assessment component aims at quantifying the relative
performance of each landscape location with respect to its reference
potential conditions. Therefore, each cell is synchronically compared
to all others over the period of analysis. On the other hand, the
monitoring component aims at detecting evolution of every location
over time, both because of its response to changing climate drivers
e period (1970–2000) for the Iberian Peninsula. Hydrological years are shown. a)Mean
l reference mean in standard deviation units. Years 1993–1994 and 1994–1995 were
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and because of its internal ecological dynamics, so each cell is
diachronically compared to itself over the same period. The results of
assessment and monitoring then converge in the land condition
diagnostics component through explicit rules that associate their
respective categories.

The methods described in this article have been coded in R and are
available in a software package called r2dRue which can be down-
loaded from any Comprehensive R Archive Network (CRAN) mirror at
http://www.r-project.org/ (accessed January 2010).

3.1. Assessment

The reduction of plant biomass and Net Primary Productivity (NPP)
below those of land not desertified under equivalent environmental
conditions is proportional to land degradation undergone. This is an
accepted perception of land condition and the most closely related to
the UNCCD definition of desertification. Both biomass and NPP can be
reasonably estimated using satellite-derived information (Tucker et al.,
1986). Two ecosystem attributes are relevant for this assessment,
annual average biomass and seasonal or inter-annual growthpeaks. The
first shows the ecosystem's long-term capacity to sustain biomass,
whilst the second concerns its resilience for recovering from dis-
turbances, in particular, rainfall fluctuation (Pickup, 1996). Annual
average biomass and NPP may be expected to decrease along land
degradation gradients whilst peakNPP (resilience) is at itsmaximum at
intermediate degradation states (Pickup et al., 1994).

Rain Use Efficiency (RUE)was originally defined as the ratio of NPP
to precipitation (P) over a given time period (LeHouerou, 1984), in
which may be interpreted as proportional to the fraction of P released
to the atmosphere through the vegetation cover. This ratio is a
suitable descriptor of ecosystem condition because it can only be
higher if the soil remains fully functional, and in this context it has
been used to describe the sustainable carrying capacity in rangelands
(Guevara et al., 1996). The NDVI has been used before as a suitable
NPP proxy in the computation of RUE using satellite imagery as input
data (Prince et al., 1998). Similarly, an appropriate integration over
time of the Green Vegetation Fraction (GVF) described in the
preceding section was used here as a surrogate NPP.

The formulation of RUE as a ratio implies that it can be expected to
be higher for drier conditions if vegetation remains constant. If the
RUE is computed over a large area with strong climatic gradients, as it
is the case of the Iberian Peninsula, drylands often account for the
highest values because of their very low P, which impedes direct
comparison between locations under different climates. To avoid this,
RUEs were plotted against an Aridity Index (AI) that was computed
for the corresponding period as the ratio of potential evapotranspi-
ration (PET) to P. This formulation is as simple as that of UNEP (1992),
but the inverted terms expand the numerical scale of drylands
without resorting to too many decimals, and also make it slightly
more intuitive. The method of Hargreaves and Samani (1982) was
used to compute PET using temperatures from the climate archive and
extra-terrestrial solar radiation.

Only areas of rainfed natural and seminatural vegetation were
used for the RUE vs. AI scatterplot, thereby ensuring that only climate
driving forces were considered. A selection mask was therefore
constructed to extract all the locations that maintain the same land
cover allocation in CLC1990 and in CLC2000, and belong to one of the
following categories: coniferous forest, mixed forest, natural grass-
land, moors and heathland, schlerophyllous vegetation, transitional
woodland-shrub, beaches, dunes and sand plains, bare rock, sparsely
vegetated areas, burnt areas, and glaciers and perpetual snow.

The upper and lower boundaries of this scatterplot are interpreted to
convey themaximal andminimal vegetation performance, respectively,
for a given aridity, which is a first step in detrending climate. These
boundaries were computed by first identifying 10 classes of AI in the
scatterplot using regular percentiles of the AI frequency distribution
over the study area, then extracting the 95th (for the upper boundary)
and 5th (for the lower boundary) percentiles of RUE for each of these
classes, and finally, empirically fitting a function to each of the series of
10 RUE percentile and AI class median pairs. The boundary functions
were selected by optimising statistical significance whilst maintaining
the model as simple as possible under visual inspection. The resulting
functions could then be spatially modelled using the AI layer as the
independent variable, yielding two layers showing the expected
maximum and minimum RUE, respectively, for every map location.
Similar rescaling was done by Boer and Puigdefabregas (2003) for
potential vegetation index prediction, and by Wessels et al. (2008) for
generating relative NPP on a land capability gradient.

A relative RUE (rRUE) was then computed to yield a new layer
showing the position of the RUE observed in each location within the
range of its maximum and minimum potential. Values of rRUE should
therefore range from 0 to 1, and it is assumed to reflect vegetation
condition in terms of observed performance with respect to the
minimum and maximum performances found empirically for that
climate. Because these boundaries were derived from percentiles, and
because they correspond to natural vegetation, some locations were
expected to exceed that range. This was useful for detecting zonal
anomalies. For example, the relatively large plant biomass in irrigated
areas receiving water from topographical or technical sources not
accounted for by thismethod,wasproperly detected as ‘overperforming’
(i.e. rRUE greater than 1) when processed by the procedure described.

The rRUE has two important properties. First, because the RUE
boundary functions were fitted from RUE percentiles within each AI
class, the expected maximum and minimum RUE for each location
was already corrected for the local AI, and therefore the rRUEmapwas
climatically detrended. And second, the RUE boundary functions are a
natural benchmark for potential vegetation performance for a given
aridity, against which any location can be compared whatever its land
cover. In this sense the rRUE map was also detrended with respect to
land uses under the assumption that undisturbed natural vegetation
shows optimum performance in terms of RUE. This means that direct
comparisons could bemade between any two locations irrespective of
their dominant climate or land use.

The detailed operation of the RUE concept used in this approach has
been omitted from the above description for the sake of simplicity.
Beyond that, the definition of the period over which observed RUE is
computed targets different responses of the vegetation cover. Long-
termRUE computed over full yearsmay reflect average biomass and can
be compared to ecologicalmaturity in the framework of the ecosystemic
approach described in the Introduction. However, short-term RUE
computed using only antecedent precipitation would rather reflect
immediate response capacity and can be interpreted in terms of
productivity or resilience. This is why two implementations were used
here. In the first one, an overall mean observed RUE (RUEOBS_me) was
computed for the full period (n=9 years)byaveraging annual observed
RUE. Each of these was computed over a hydrological year as the mean
of 12 monthly GVFs divided by the sum of 12 P. For month i in year j:

RUEOBS me =
1
n
⋅ ∑

n

j=1

1
12 ⋅ ∑

12

i=1
GVFj;i

 !

∑
12

i=1
Pj;i

0
BBBB@

1
CCCCA: ð1Þ

The corresponding overall mean aridity index (AIOBS_me) is
computed accordingly:

AIOBS me =
1
n
⋅ ∑

n

j=1

∑
12

i=1
PETj;i

∑
12

i=1
Pj;i

0
BBB@

1
CCCA: ð2Þ

http://www.r-project.org/
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In the second implementation, an extreme observed RUE
(RUEOBS_ex) was computed again for the full period. In this case,
the maximum GVF in each cell (GVFt) was selected from among the
monthly data available in the time–series, and this was then divided
by the sum of P over the six months preceding the month (t) when
that maximum was detected. The result was a composite layer, as
the maximum GVF appeared in each cell at a different time:

RUEOBS ex =
GVFt

∑
6

i=1
Pt−i

: ð3Þ

An associated aridity index (AIOBS_ex) was also computed for this
particular six month period:

AIOBS ex =
∑
6

i=1
PETt−i

∑
6

i=1
Pt−i

: ð4Þ

Both implementations of observed RUE (RUEOBS_me and RUEOBS_ex)
were processed following the steps described above to find their
respective boundary functions and relative values (rRUEme and rRUEex
respectively; computation is shown for the first):

rRUEme =
RUEOBS me−RUEEXP me P05

RUEEXP me P95−RUEEXP me P05
ð5Þ

where the subscripts _P05 and _P95 refer respectively to the expected
minimum and maximum RUE corresponding to the aridity in each
location, given by the boundary functions (subscript EXP) as explained
above in the scatterplot procedure.

The distinction between mean and extreme RUE is considered
potentially useful, as they may be different for vegetation types
depending on the type of cover (e.g. annual plants, irrigated areas,
forests, etc.).

The use of the mean of 12 monthly GVFs to compute annual
observed RUE (Eq. 1) departs from the convention of approaching NPP
through a summatory of individual values of the selected vegetation
index. It was done this way to facilitate frequent follow-up of the
process by querying input and output layers in search of spatial and
seasonal errors, as all of them would share the order of magnitude.
This consideration also applies to the monitoring component of our
approach (see the following Section). The division by a constant term
of 12 has no effect on the relative spatial or temporal variations in
cumulative GVF, as it is computed anyway. The study by Bai et al.
(2005), which can be taken as an example of experimental
confirmation of this, reports two relevant findings. They compared
NDVI-based indicators of land degradation derived from the Global
Inventory Modelling and Mapping Studies (GIMMS) dataset, both
between them and with RUE estimates. On one hand, they found a
very high correlation (r2=1) between the mean and sum of NDVI
values, and also similar temporal trends, and were therefore
considered alternates. On the other, highly significant correlations
(pb0.001) were detected between RUE estimates computed using
NPP data derived from a carbon exchange model and those derived
from the NDVI, again considering them alternates. In our assessment
component, computation of relative RUE from the boundary functions
(Eq. 5) further transforms the numerical scale of observed RUE into a
common reference range of 0 to 1, whatever the scale of the original
estimate.

3.2. Monitoring

Changes in plant biomass over time make an accepted indicator of
trends in land condition. A gradual depletion of biomass is generally
interpreted as ongoing degradation, and reciprocally, an increase is
interpreted as improvement in a responsive ecosystem. It is important
to remark that such a basic understanding refers only to rates of
change, and is therefore independent of the bulk ecosystem biomass,
which was an issue in the assessment explained above.

In this case, RUE could not be used to monitor vegetation trends
during the period for two reasons: the bias associated with the use
of precipitation both as for the computation of RUE and as a tested
predictor (Hein & de Ridder, 2006), and the relative nature of
detrending in the computation of rRUE. Raw GVF was therefore used
instead.

When using low resolution Earth Observation in a large territory,
trends in plant biomass can be simplified as driven by two factors:
climate and internal ecological dynamics. Only the second is relevant
to land condition, as it can be related to a secondary succession.
Therefore, monitoring of plant biomass along relatively long periods
requires accounting for possible effects of a drifting climate. Failing to
do so might result, for example, in erroneously interpreting a piece of
healthy land as degrading, when biomass is declining simply because
of decreasing precipitation.

Multiple stepwise regression was carried out to isolate the effects
of time and climate on the green biomass in each cell. As resolution
was yearly, each cell entered a regression with 9 points. In each of
these, the dependent variable was the yearly mean of 12monthly GVF
values, and the two predictors were the year sequence number and
the yearly AI computed using the corresponding 12 months. The
purpose of this analysis was to detect partial contributions of the two
predictors, creating significant trends in the dependent variable (not
to make predictions of the latter for given values of the former).
Accordingly, the regressions were used in a standardised form, in
which the partial regression coefficients are expressed in standard
deviation units, rather than in the original units of each variable (such
coefficients are also known as beta coefficients). This enabled direct
comparison of the relative strength of time and aridity for imprinting
a change of one standard deviation on the GVF. All the procedures
followed the formulations in Sokal and Rohlf (1995).

When there is a correlation between the two predictors, as might
be the case with time and aridity, the overall significance of a multiple
regression may not be indicative of their individual effects. Hence, a
second independent variable must be incorporated in the regression
model only as long as the additional increment of determination it
produces is significant. We proceeded to deal with this requirement in
the following way. First, the coefficient of multiple determination was
computed using both time and aridity as predictors (R2GVF_1,2), and its
overall significance was tested to a threshold of α=0.10. For
significant cases, the second variable in the multiple regression was
the one with the lowest simple correlation coefficient with GVF
(rGVF_2). Then the increment in the determination due to the second
variable over the determination using the first variable alone was
tested by comparing the observed statistic Fs:

Fs =
R2
GVF 1;2−r 2GVF 2

1−R2
GVF 1;2

� �
= n−3ð Þ

ð6Þ

with the expected F-distribution at a threshold of α=0.10 for 1 and
n−3 degrees of freedom (Fα=0.10[1,n-3]), where n is the number of
data points. Eq. (6) shows a simplified formulation of this step using
only two independent variables. The parameters used are commonly
provided by statistical software packages and are not described
here.

If this was also significant, a multiple regressionwould be accepted
and the respective standard partial regression coefficients would be
used to quantify the effects of both time and aridity. Otherwise, simple
regressions were explored for each variable through the significance
of its respective correlation coefficient. For significance at α=0.10,
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the corresponding correlation coefficient was used as a standard
single regression coefficient because it is by definition the slope of a
regression in standard deviation units. If no significance was found in
any of the above tests, GVF was assumed not to be affected by either
time or aridity.

3.3. Land condition

The assessment and monitoring tasks described in the sections
above aimed at yielding four basic maps quantitatively reflecting four
different land condition components, overall relative biomass (in
terms of rRUEme), overall relative productivity (in terms of rRUEex),
biomass response to aridity and biomass response to time (in terms of
their respective standard partial or simple regression coefficients) as
primary products to be used as elementary information in land
management or additional modelling. Further to that, a higher level
understanding of land condition in the study area was gained by
simplifying their respective individual information to binary attri-
butes, which were subsequently combined to produce the legend
categories on the land condition map.

In the assessment task, both implementations of relative RUE
were ranked and defined in turn by boundary functions associated
with percentiles. Hence, by definition, there will always be locations
outside these ranks. A broad summary of land performance in
reaching and maintaining an optimal biomass was therefore achieved
by classifying each of the relative RUEs into three basic categories:
below range (lower than 0), within range (0 to 1), and above range
(greater than 1).

The obvious criterion for reclassifying monitoring results was
whether biomass had a positive, negative, or non significant trend
over time or aridity.

Each of the four basic maps was thus reclassified into three
categories. Hence a merely combinatorial approach could yield up to
81 classes of land condition. That undesirable complexity was
overcome in a meaningful manner by composing the legend on the
final map on two hierarchical levels. The higher one corresponded to
assessment classes and indicated the state of land, whilst the lower
level was found using monitoring attributes to indicate land trends
over time. The final definition of this legend depends somewhat upon
the final results and required some adaptation in consistency with the
concept of degradation. Therefore, legend classes and subclasses are
precisely described in Section 4 of this article.

3.4. Validation

Land condition is a rather abstract concept that was applied in this
work on a decadal time span. This, and the relatively coarse spatial
resolution, prevented directly testing the results against field ob-
servations. In practical terms, the validation of an approach like the
one presented here shouldmeet two basic conditions, the spatial scale
of validation data should be comparable to that of the final land
condition map, and the information conveyed by this validation
dataset should be interpretable at a level of abstraction equivalent to
that of the land condition concept.

For validation, we employed a set of spatially distributed data for
which a landscape condition could be assumed, the Natura 2000
network Sites of Community Interest (SCI). This European conserva-
tion network was set up in 1992, and SCI land condition can be taken
as representative of the study period. The SCI network in continental
Spain includes 853 designated sites, which accounts for 22% of the
territory (Fig. 1d). Because their designation aimed at representing
relevant natural species and habitats, it contains a variety of
landscapes. And because the conservation of those habitats is the
network's main purpose, conditions in the portion of territory included
in it canbe assumed tobe favourable for vegetation to thrive. TheNatura
2000 network includes natural and semi-natural landscapes where
traditional management is allowed, but land uses leading to the over-
exploitation of natural resources are normally excluded. Whilst
traditional management does not necessarily mean sustainable man-
agement, in general terms, land conditionwithin the Natura 2000 space
can be expected to be good, and our validation is based on this working
hypothesis.

Validation was done using mainland Spain (about 85% of the
Iberian Peninsula) as the test area, at a working resolution of 1 km.
The concrete purpose was to find out whether there is an association
between landscape conservation, in terms of membership in the
Natura 2000 network, and land condition, in terms of the final output
map classes. A sample of 45,731 cells, roughly representing 10% of the
whole test area, was extracted from the original maps using a
stratified-random design. This dataset was assumed to be made up of
independent samples, including absence of spatial autocorrelation.

A chi-square test was done for the null hypothesis that there is
no association between conservation status and land condition. The
sample dataset described above was divided in two groups defined by
membership to Natura 2000, and the proportions of cases belonging
to the land condition classes were compared. The test evaluates
whether or not the differences observed in these proportions sig-
nificantly exceed those that could be expected bymere chance (Siegel
& Castellan, 1988). To do this, an observed statistic (χ2) was
computed from the sample data and its probability was then found
in the chi-square distribution. If the alternative hypothesis was
accepted, the residual (i.e. observed minus expected) frequencies
would be used to interpret the sense and meaning of that association.

It could be argued that the use of conservation reserves to validate
land condition is incomplete because only better condition classes
are tested. This is only partly true. In fact, these classes are expected
to be around the upper boundary of observed RUE over aridity. It is
therefore this boundary that is really validated, that is, the maximum
reference condition against which all the locations of a given degree
of aridity will be assessed.

4. Results

4.1. Assessment

Scatterplots and boundary functions of observed RUE over aridity
are shown in Fig. 3a and b. In the absence of a theoretical criterion for
a particular model for those functions, several models were tested and
themost significant fit was selected in each case (Table 1). It is worthy
of note that the increase in mean observed RUE becomes gentler with
increasing aridity, which is confirmed by the inverse model selected
for both boundary functions. On the contrary, extreme observed RUE
increases with aridity confined within an upper power and a lower
quadratic boundary function.

The resulting relative RUE maps are shown in Fig. 3c and d. The
distribution of values does not reflect any apparent climatic bias in
either map. Patches with high mean relative RUE are scattered around
the study area, some of them associated with the banks of major rivers.
Extreme relative RUE is somewhat spotty because it is a compositemap.
In spite of this, zones with high values are consistently detected
surrounding the Ebro basin and in the Northern Plateau.

As expected, the geographic patterns of mean and extreme relative
RUE do not generally match. This is clearer in the contingency table
shown in Table 2. The dominant combination is by far the one with
both estimators of relative RUE within the 0 to 1 range. This is a
predictable outcome of the method, as the respective boundary
functions were fitted to percentiles that enclose the majority of the
data points. That middle combination should be taken as a baseline
condition where acceptable oscillation is associated with land
management and cover.

Wherever any of the relative RUE estimators exceeds the stated
range, it should generally be interpreted as a deviation associated



Fig. 3. Rain Use Efficiency (RUE) in the Iberian Peninsula (1989–2000), computed as the inter-annual mean of each location over the full period (a and c), and for the six-month
period preceding the time when maximum vegetation density was detected at each location (b and d). Empirical boundary functions fitted to the scatterplots of observed RUE over
aridity (a: RUEOBS_me vs. AIOBS_me ; b: RUEOBS_ex vs. AIOBS_ex) define the potential limits of expected RUE for any aridity level. Only locations of rainfed natural and seminatural
vegetation (grey dots) were used to fit the boundaries, whilst irrigated crops and other surfaces not responding to climate (red dots) are shown for information. Relative RUE
(c: rRUEme ; d: rRUEex) is then computed for each location as the position of its observed RUE within the referred limits.
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with under or overperforming vegetation in the respective compo-
nent. Apart from the baseline combination, mean and extreme
relative RUEs assess land condition similarly in 3.41% of the locations.
However, the sum of combinations where both estimators differ in
their results accounts for 24.19% of the study area, which suggests that
they convey different information. In two of these combinations,
mean and extreme relative RUE yield completely opposite results.
They represent 0.18% of the study area and are considered as
uninterpretable anomalies.

The assessment map legend (Fig. 4) was made using the combina-
tions in Table 2 as follows. Locations where the mean and extreme
relative RUE are below range were considered to be consistently
underperforming in terms of the basic interpretation of RUE, and were
reclassified to unusually degraded land. If one of the estimators was
below range whilst the other was within range, the corresponding
locations were reclassified to degraded land. The baseline combination
where both mean and extreme relative RUE were within range was
considered to represent land in good condition. And any other
combination where either of the estimators was above range (except
the two anomalies) was considered to be overperforming and was
therefore reclassified as land in unusually good condition.

4.2. Monitoring

The significance of effects of time and aridity on the GVF is shown
in Fig. 5a. Approximately 5% of the Iberian Peninsula showed a
Table 1
Parameters of the boundary functions fitted to the 5th and 95th percentiles of observed RU
expected RUE at 95th percentile; RUEEXP_ex_P05: extreme expected RUE at 5th percentile; RU
index; AIOBS_ex observed aridity index computed for the six-month period preceding the mo

Y X Model

RUEEXP_me_P05 AIOBS_me Y=b0+(b1/X)
RUEEXP_me_P95 AIOBS_me Y=b0+(b1/X)
RUEEXP_ex_P05 AIOBS_ex Y=b0+b1∙X+b2∙X 2

RUEEXP_ex_P95 AIOBS_ex Y=b0 X b1
significant response to both time and aridity in the regression
procedure. This is comparatively low with respect to the proportion
of individual responses to any single predictor (40%), and is likely to
be associated with the fact that a stepwise approach is more
conservative than a simultaneous multiple one. 55% of the study
area did not show any linear response to either of the predictors.

Fig. 5b and c shows the effect of aridity and of time, respectively, on
GVF over the study period. Correlation coefficients and standard
partial regression coefficients have been combined on the same map
for each of the predictors depending onwhether a significant single or
multiple regression was fitted at every location. They are mere
reclassifications by the coefficients sign, however they are useful in
displaying the geographic distribution of effects. Aridity produces
large patches of negative effects (i.e. depletion of GVF with increasing
aridity) which are well distributed over the areas of Mediterranean
influence, whilst positive effects are confined to northern mountain
ranges such as the Pyrenees and Cantabric mountains. The effect of
time on GVF is positive in the vast majority of locations where a
significant relationship was detected, and only a few small spots
scattered over the Mediterranean area show GVF depletion over time.

Themonitoringmapwas thenmade by using significance categories
(Fig. 5a) as a mask, and the sign of effects (Fig. 5b and c) to identify
trends. Its legend includes all the possible combinations of single or
multiple and positive or negative effects, and is further detailed in
Table 3. In general, effects of aridity should be attributed to climatic
variationwithin the study period, and effects of time to the overall trend
E vs. aridity. RUEEXP_me_P05: mean expected RUE at 5th percentile; RUEEXP_me_P95: mean
EEXP_ex_P95: extreme expected RUE at 95th percentile; AIOBS_me: observed mean aridity
nth when maximum vegetation density was detected.

b0 b1 b2 p

0.076 −0.033 b10E−4
0.119 −0.047 b10E−4
0.047 0.040 4E−4 b10E−4
0.218 0.584 b10E−4



Table 2
Contingency table of mean vs. extreme relative RUE (rRUEme and rRUEex respectively) after their classification in three basic intervals. Table entries are: assessment class allocation
and total area [km2 (%)].

rRUEmeb0 0≤ rRUEme≤1 1b rRUEme Total

rRUEexb0 Unus. Degr. Degr. Anomaly
14,261(2.45) 24,914 (4.28) 340 (0.06) 39,515 (6.79)

0≤rRUEex≤1 Degr. Good Unus. Good
391,47 (6.73) 421,094 (72.40) 28,612 (4.92) 488,853 (84.05)

1brRUEex Anomaly Unus. Good Unus. Good
688 (0.12) 47,004 (8.08) 5566 (0.96) 53,258 (9.16)

Total 54,096 (9.30) 493,012 (84.76) 34,518 (5.93) 581,626 (100.00)
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ofGVF excluding climatic responses. This, in turn, is associatedwith land
management or with intrinsic ecological processes occurring in the
vegetation cover. Single effects interpretation is straightforward. Both
explanations are still true for multiple effects, but their importance as
drivers must be in the order of the local standard partial regression
coefficient strength. Table 3 reports averages, but some general
interpretations are possible. For example, where GVF increases in time
and decreaseswith aridity, themean of the latter coefficient is stronger.
It follows that arid spells or a sustained increase in aridityover thewhole
study period have played a dominant role in GVF depletion, but this is
still accumulating over time, albeit at a slowpositive rate. This is theonly
case in Table 3where themean of an aridity coefficient is higher than its
equivalent time coefficient.

4.3. Land condition

The assessment map reflects bulk GVF whilst the monitoring map
conveys rates of change in GVF. Land condition categories were
Fig. 4. Assessment of land condition in the Iberian Penin
therefore derived from a hierarchical combination of assessment
classes and monitoring subclasses. In this exercise, subclass labels
were adapted to the contents of the main classes in the following
ways:

- Land with no significant trends in either time or aridity was called
static whatever its condition.

- Land with negative trends over time was called degrading
whatever its condition.

- Land with no trends over time but with a significant response to
aridity in any sense was considered to react to variation in climate.
It was called fluctuating if the condition was degraded, and resilient
if condition was good.

- Land with positive trends in time was called recovering if it was
degraded, and improving if it was already in good condition.

Table 4 shows the details and extent of the classes and subclasses
so defined, and the corresponding land condition map is shown in
Fig. 6. It is important to stress that such names and definitions aim
sula (1989–2000). Legend is consistent with Table 2.



Fig. 5. Linear effects of time and aridity on Green Vegetation Fraction in the Iberian Peninsula (1989–2000). a) Significance at the threshold of α=0.1. Response to both predictors
refers to the coefficient of multiple determination and to the increment of determination associated with the second predictor. Response to a single predictor refers to the coefficient
of correlation. b) Effect of aridity in terms of the sign of the standard partial or single regression coefficient. c) Effect of time in terms of the sign of the standard partial or single
regression coefficient.
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only at using a consistent nomenclature at a level sufficiently
generalized to deal with a large territory like the Iberian Peninsula.
Hence the land condition map should be taken as a kind of broad
stratification, and real diagnostics of particular locations should be
made using the numerical values in the assessment and monitoring
procedures.

Nevertheless, some conclusions can be drawn at that general level.
First, the amount of land in any condition that is degrading is
relatively small and accounts for only 0.85% of the Iberian Peninsula.
This degrading trend is relatively more frequent in already degraded
land, although it is still marginal even in that class. Truly static land
showing no trend during the period is absolutely dominant whatever
the condition (54.67% of the area), but its relative importance in
assessment classes increases as condition deteriorates. It amounts to
75% of unusually degraded land, but to only 55% of land in unusually
good condition. A contrary pattern is detected in land with a positive
trend in time as its relative importance increases as condition
improves, from unusually degraded land where recovering trends
account for 12% of extension, to land in unusually good condition,
where 33% of the locations are improving. On a whole, positive trends
in time are detected in 29.13% of the territory. Fluctuating or resilient
trends have a maximum share in intermediate condition classes,
where they reach 17% of degraded land and 16% of land in good
condition respectively.

The spatial distribution of the land condition categories follows
some apparent geographic patterns too. Land in good condition with
clearly identifiable resilient or improving patches prevails south of the
Pyrenees and in the western third of Iberia, whilst static patches form
a matrix in the rest of the territory in which other categories are
embedded. Unusually degraded, or degraded, static land is frequent in
continental areas with Mediterranean influence and in the south,
Table 3
Relative strength of effects of time (t) and aridity (AI) on GVF (rate of change in standard dev
to areas of significant effects shown in Fig. 5. Table entries are mean and 95% confidence inter
coefficient (b′) for multiple effects; and area [km2 (%)].

Effect of time Effect of aridity

− 0

− Degrading Degrading
b′t=−0.628±0.013 rt=−0.716±
b′AI=−0.597±0.013 n.a.
415 (0.07) 4397 (0.76)

0 Fluct. or Resilient Static
n.a. n.a.
rAI=−0.700±0.001 n.a.
82,139 (14.12) 318,553 (54.7

+ Recover. or Improving Recover. or Im
b′t=0.633±0.003 rt=0.721±0.
b′AI=−0.670±0.004 n.a.
14,447 (2.48) 140,971 (24.2

Total 97,001 (16.68) 463,921 (79.7
whilst fluctuating trends can be found in a large compact zone in the
southeast. Finally, static and resilient land in unusually good condition
are found on both central plateaus and in the northeast, whilst
improving patches can be seen tracing the banks of large rivers
(notably the Ebro in the northeast) and in a more compact area in the
northwest corner of the Peninsula.

4.4. Validation

The chi-square test has two requirements if any of the variables
has more than 2 classes: less than 20% of expected frequencies lower
than 5, and no expected frequency lower than 1. As reported in the
preceding Section, the land condition categories Unusually degraded –

Degrading, and Degraded – Degrading are comparatively small and
their further subdivision by conservation status would not meet the
latter requirement. Therefore, and for validation purposes only, they
were grouped with the static trend in their respective assessment
class. Table 5 shows the results of the chi-square test of the regrouped
land condition categories and conservation status. The test was
significant, and therefore the alternative hypothesis that there is an
association between them could be accepted. Residuals express the
difference between observed and expected counts when there is no
relationship between variables. Their interpretation enables further
details to be inferred on the meaning of that association.

Unusually degraded, or degraded land, are negatively associated
with SCI (i.e. classes underrepresented in conservation reserves)
whatever the trends. Land in good, or unusually good condition, is
also negatively associated if it is degrading. On the contrary, SCI are
positively associated with land in good condition for most of the
remaining trend subclasses. SCI are also positively associatedwith static
land in unusually good condition. These basic facts are consistent with
iations of GVF per one standard deviation of each predictor). Combinations correspond
val of either coefficient of correlation (r) for single effects, or standard partial regression

Total

+

Degrading
0.003 b′t=−0.817±0.025

b′AI=0.500±0.028
201 (0.03) 5013 (0.86)
Fluct. or Resilient
n.a.
rAI=0.667±0.002

7) 6256 (1.08) 406,948 (69.97)
proving Recover. or Improving
000 b′t=0.837±0.003

b′AI=0.562±0.002
4) 14,247 (2.45) 169,665 (29.17)
6) 20,704 (3.56) 581,626



Fig. 6. Land condition map for the Iberian Peninsula (1989–2000). Legend is consistent with Table 4.

Table 4
Land condition categories in terms of the assessment and monitoring estimators. Area in the Iberian Peninsula (1989–2000) for each class and subclass.

Assessment Monitoring Land condition Area [km2 (%)]

Effect of time Effect of aridity

Unusually degraded 14261 (2.45)
rRUEmeb0 AND rRUEexb0 − −/0/+ Degrading 119 (0.02)

0 0 Static 10651 (1.83)
0 −/+ Fluctuating 1717 (0.30)
+ −/0/+ Recovering 1774 (0.31)

Degraded 64061 (11.01)
(rRUEmeb0 AND 0≤rRUEex≤1

OR
(0≤ rRUEme≤1 AND rRUEexb0)

− −/0/+ Degrading 832 (0.14)
0 0 Static 42336 (7.28)
0 −/+ Fluctuating 10910 (1.88)
+ −/0/+ Recovering 9983 (1.72)

Good 421094 (72.40)
0≤ rRUEme≤1 AND 0≤ rRUEex≤1 − −/0/+ Degrading 3211 (0.55)

0 0 Static 220019 (37.83)
0 −/+ Resilient 66627 (11.46)
+ −/0/+ Improving 131237 (22.56)

Unusually good 81182 (13.96)
(1b rRUEme AND 0≤rRUEex≤1)

OR
(0≤ rRUEme≤1 AND 1b rRUEex)

OR
(1brRUEme AND 1b rRUEex)

− −/0/+ Degrading 841 (0.14)
0 0 Static 44953 (7.73)
0 −/+ Resilient 8969 (1.54)
+ −/0/+ Improving 26419 (4.54)

Anomaly 1028 (0.18)
(rRUEmeb0 AND 1brRUEex) OR
(1brRUEme AND rRUEexb0)

1028 (0.18)

1828 G. del Barrio et al. / Remote Sensing of Environment 114 (2010) 1817–1832



Table 5
Results of a chi-square test of regrouped land condition categories and membership to
the Natura 2000 network Sites of Community Interest (SCI) in continental Spain. Table
entries are residual (observed minus expected) counts (χ2=427, df: 13, n=45731,
pb10E−4). See explanation in the text.

Land condition Conservation status Total

Non-SCI SCI

Unusually degraded Degrading or Static 45 −45 710
Fluctuating 20 −20 127
Recovering 11 −11 140

Degraded Degrading or Static 252 −252 3558
Fluctuating 112 −112 847
Recovering 28 −28 622

Good Condition Degrading 8 −8 233
Static −392 392 17,599
Resilient 89 −89 4713
Improving −304 304 9892

Unusually good
condition

Degrading 14 −14 66
Static −39 39 4065
Resilient 56 56 734
Improving 101 −101 2425

Total 35,810 9921 45,731
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the conservation goals of the Natura 2000 network and back the initial
working hypothesis that landscapes belonging to it are in favourable
condition for maintenance and succession of the vegetation cover.

Land in unusually good condition that is improving, and resilient
good condition land, are negatively associated with SCI in apparent
contradiction to the general results. However, a query on the land
cover of these locations did show that uses are mainly agricultural
uses, often with intensive irrigation as discussed below. Therefore this
exception actually confirms the type of association between conser-
vation status and land condition and, indirectly, contributes to the
validation of the latter.

5. Discussion

The section above reports on the main findings derived from the
analysis performed, and interpretation is restricted to a minimum.
However, there are several points in both the Methods and Results
that require further discussion to better understand the results of our
work.

The core of the assessment procedure is the fit of boundary
functions to the scatterplot of observed RUE vs. observed aridity. The
fact that a least squares model could be fitted with a high level of
significance suggests that the scatterplot is compact and its shape can
be approached using simple equations. This in turn supports the idea
that reference areas could be statistically detected along the full
gradient of aridity in the study area.

Both mean (RUEOBS_me) and extreme (RUEOBS_ex) observed RUE
increase quickly with aridity from low values corresponding to humid
locations. That is the predictable behaviour thatmakes RUE unsuitable
for assessing vegetation cover in large regions containing different
climates. Such increase tapers with aridity in the case of RUEOBS_me,
showing that less precipitation is compensated in the long-term by a
proportional loss of density in the vegetation cover. This is at least
true for the range of arid zones in the Iberian Peninsula, but it should
not be extrapolated outside that range.

In contrast, extremeobserved RUE increases indefinitelywith aridity
at a rather constant rate. Whilst that pattern is clearly observed, its
explanation exceeds the scope of this work and refers to a variety of
processes related to the response of vegetation to rainfall events. It has
especially intriguing relationships with the findings reported by
Huxman et al. (2004), by which very different biomes show similar
and maximum RUE under water-limiting conditions. Notwithstanding,
the use of a common six-month, antecedent period for all locations is an
oversimplification, and the refinement of models to detect a significant
number of time lags, for example as incorporated in Udelhoven et al.
(2009)would probably improve this, but at the expense of computation
simplicity.

Nevertheless, the empirical model presented here seems to have
overcome two main limitations of assessment approaches, values for
zones with different climates are comparable, and reference areas
can be found (Prince et al., 2007; Veron et al., 2006). The second issue
has been successfully approached by identifying natural reserves
(Garbulsky & Paruelo, 2004), but it is difficult to maintain a strict
control of climate variability and there is also a subjective component.
We have done this statistically by specifying percentiles for
calculating expected RUE. The Iberian Peninsula contains landscapes
covering the full range of land condition in every climate zone.
Therefore, the 5th and 95th percentiles were used to allow a wide
symmetrical range of relative RUE results to be included in the middle
assessment class. But these percentiles could be changed depending
on the purpose or the characteristics of the study area, which could
require some preliminary work. For example, if an area is known to be
generally degraded and reference vegetation is scarce or lacking, an
asymmetrical interval of percentiles in the upper ranges of observed
RUE (say 40% and 95%) could still yield an unbiased assessment of
land condition.

The observed RUE foundwithin the specified percentiles define land
in good condition and the reason for aiming at as wide an interval as
possible is to obtain enough numerical resolution in the computation of
relative RUE. Obviously, that step controls the number of locations that
are considered out of range. In our study, the classes ‘unusually
degraded’ and ‘degraded’ together are equivalent to ‘unusually good’ in
terms of their definitions with respect to the range defined by ‘good’.
‘Good’ accounts for 72.40% of the locations (Table 2), and the marginal
classes together account for 27.42% almost evenly divided between
below and above (the remaining 0.18% corresponds to uninterpreted
anomalies). This proportion is slightly higher than the10% thatmight be
expected strictly from the percentiles, and the difference should be
attributed to the fit of the boundary functions. In spite of that built-in
concentration of observations in amiddle range, theuse of twoobserved
RUE implementations leads to a meaningful discrimination of types of
landscapes, as discussed below.

The stepwise multiple regression applied in the monitoring
procedure proved to be useful to separate the effects of time and
aridity on the GVF change rates. The climate in the Iberian Peninsula
did not remain constant during the second half of the 20th century but
was subject to both spatial and temporal variability (de Luis et al.,
2008; Gonzalez-Hidalgo et al., 2008), with an overall trend to
aridification in the Mediterranean zone (Gonzalez-Hidalgo et al.,
2001). Our correlation analysis (between GVF, aridity and time) was
consistent with those results and showed that such climate drift was
not homogeneous. Most of the Iberian Peninsula did not show
significant trends, but important areas in the northwest did evolve
towards greater wetness, whilst most of the Mediterranean zone
experienced increased aridity.

The effects of aridity on vegetation density are known to be
negative, and have been reported for large areas of the Ebro Valley in
NE Spain for an equivalent period (Vicente-Serrano et al., 2006).
Interestingly, Fig. 5b shows negative effects of aridity on GVF in
coincident Mediterranean areas, and Table 3 reveals that the
magnitudes of such effects are comparable to those of time. It follows
that areas where aridity and time have respectively negative and
positive effects on GVF, could be misclassified as static if only time
were used as a predictor. In fact, a cross tabulation between the effects
of time as in Fig. 5c and an equivalent map of effects constructed using
straight-forward significant correlation coefficients between time and
GVF detected such a situation in 10,941 km2, most of them in
Mediterranean areas. A better interpretation for those areas would be
that a decrease in rainfall has had a negative effect on the rates of
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growth of vegetation, and once this effect is removed, it is observed to
still be accumulating over time.

Increased aridity shows positive GVF effects in certain areas
(Fig. 5b), mainly associated with northern mountain ranges such as
the Cantabric or the Pyrenees Mountains. This occurs in wet or wet
sub-humid zones and is likely to be more associated with higher
temperatures in environments where this factor is limiting than to a
decrease in precipitation (Vicente-Serrano et al., 2004).

Isolating the effects of aridity on vegetation trends is more than a
mere methodological refinement. Rainfall anomalies cause vegetation
anomalies, which allow detection of overall greening at a global level
(Hellden & Tottrup, 2008). But land degradation addresses precisely
what is left after such effects have been removed (Herrmann et al.,
2005). It is generally accepted that a depletion of biomass is an
indicator of land degradation. This has been confirmed by several
studies (e.g. Geerken & Ilaiwi, 2004; Herrmann et al., 2005; Lambin &
Ehrlich, 1997). Several of these studies have also taken climatic
conditions directly or indirectly into account. Other studies (Olsson
et al., 2005; Wessels et al., 2007) have reported on the influence of
variability in precipitation on biomass directly in the Sahel zone and in
southern Africa, respectively. Thus, Mulligan et al. (2004) stated that
climate variability “is king” in semi-arid to arid environments and
may thus camouflage human-induced changes. The stepwise regres-
sion approach implemented in this study makes it possible to assess
the magnitude of the influence of the two factors, climate and time,
separately. As the time factor is connected to human-induced changes,
overestimation of degradation trends can be prevented.

Some additional interpretation is required to identify the types of
landscapes thatmaybeassociatedwith the classes and subclasses on the
final land condition map. We employed Level 3 of the CORINE Land
Cover 2000 database (CLC2000) for two reasons, it is a comprehensive
and hierarchical classification of prevailing land cover classes in Europe,
and it is updated regularly, therefore enabling future repetitions of this
work either in other countries or in the Iberian Peninsula.

We found a significant association between dominant CLC2000
classes and land condition categories using the same sampling network
thatwasused for validation (χ2=14,548,df208,n=45731,pb10E−4).
Its complete interpretation is beyond the scope of this work, but some
key relationships provide useful insights into the approach used here.
For example permanently irrigated land and, to a lesser extent, fruit
trees, are strongly associatedwith land inunusually good condition, both
static and improving. Such land uses are based onwater brought in from
outside the system to increase vegetation density beyond the zonal
standards of aridity. Therefore when such exuberant cover is evaluated
relative to its local rainfall, as in RUE, it scores as overgrown. That is
further accentuated by the fact that irrigation often involves intensive
management to maximize production in semi-arid zones. Irrigated land
then goes beyond the 95% percentile of observed RUE for its degree of
aridity, and is appropriately considered as unusually good by the
assessment procedure. This also explains the poor affinity between this
land condition category and membership to the Natura 2000 network.

In a less extreme situation, there is a high frequency of agro-
forestry and natural grasslands in resilient land in good condition, and
of broad-leaved forest, coniferous forest and transitional woodland-
shrubs on improving land in good condition. This mirrors the land-
scape in mountain ranges and abandonment of much cultivated land
after Spain and Portugal joined the European Union. This trend has
been reported using NOAA-AVHRR time–series data for both NE Spain
(Lasanta & Vicente-Serrano, 2006; Vicente-Serrano et al., 2003) and
for the whole Iberian Peninsula, where a rural exodus syndrome was
identified (Hill et al., 2008). Those locations are commonly located
close to the upper boundary function in our analysis.

Sparsely vegetated areas show avoidance for land in good or
unusually good condition except if it is degrading, and has a high affinity
for all categories of degradedor unusually degraded land. This land cover
is the bottom line in all cases and is around the lower boundary function.
Areas truly limited in their vegetation performance by inherent
properties of their habitat would be relatively rare, especially in the
drier regions of the aridity gradientwhich are oneof ourmain targets. As
aridity increases, the role of water as a limiting factor increases
proportionally over the importance of other physical factors such as
soil nutrients. This is the basis of convergence to a common RUE across
biomes in dry seasons (Huxman et al., 2004), and becomes relevant at
the spatial and temporal scales at which this study was done.

The interpretations above used natural or semi-natural vegetation
as much as possible, because it represents rather stable and pre-
dictable responses to the effects of the drivers used. Proper
agricultural land uses show mixed affinities and avoidances across
the full spectrum of land condition categories, and do not allow
patterns as regular as those commented above to be found. This is the
case of non-irrigated arable land, for example, as it contains a broad
variety of crops under many management practices. We believe that
suchmoderate dispersion is in fact a subject for the approach reported
in this work, rather than an element for interpretation.

6. Conclusion

The approach for the assessment and monitoring of land condition
described in this article has demonstrated consistent performance
in its application to the Iberian Peninsula. The use of a long period
for developing parallel procedures of synchronic assessment and
diachronic monitoring was a milestone in overcoming the paradox
of monitoring as a sequence of assessments. This is intrinsically
contradictory when dealing with complex landscape mosaics, as
assessments commonly require relative estimators, the results of
which are often difficult to set in a meaningful time sequence. We
have based the whole approach on an estimator of vegetation density
(GVF) derived from Earth Observation. A relative ratio (rRUE) was
used to generate assessment classes, which enabled detrended
comparisons across space. However, rates of change in raw GVF
over time and aridity were used to generate subclasses of monitoring
in terms of trends with respect to those drivers. We believe that,
beyond the particular methods used for every procedure, this concept
is general and may be applied whenever assessment and monitoring
must be performed jointly to detect land condition.

The concrete methodologies developed here for the assessment
and monitoring procedures have succeeded in confronting some
important challenges. In the first, boundary functions were effective
in two ways, statistical detection of reference areas, which is probably
a better alternative than their designation by expert, but subjective
criteria, and comparable ranges for the calculation of relative RUE
across different climate zones. Making the RUE of any given location
relative to its most probable range means that locations can be
directly compared. As a corollary, different land covers or uses can
also be directly compared on that basis, a common limitation in
assessment procedures. This was further reinforced by the two time
scales used for the computation of mean and extreme RUE, which
were useful for improved discrimination of landscape types. With
respect to the monitoring procedure, the use of a stepwise multiple
regression was demonstrated to be effective in discriminating effects
of a drifting climate from other internal trends in vegetation, which
can then be attributed to internal dynamics or to land management.
Nonetheless, an advantage of this assessment and monitoring
approach is the use of a relatively modest input dataset including
time–series of an indicator of vegetation density and climate data.
Whilst this is not yet readily available for many areas, generic
databases are evolving quickly and this or similar models will see
increased applications in the near future.

Our approach is not free of problems, however. First of all, it is strictly
empirical. Whilst every effort has been made to make vegetation
condition values consistent within a given study area and period, there
is no explicit link made between statistical procedures and underlying
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ecological functions. The boundary functions are selected by best fit, and
their shape remains largely unexplained in terms of plant ecophysiol-
ogy. As a result, absolute references of vegetation performance are
lacking in thismodel and land conditionmust be assessed by its relative
position in an interval. The same is true for the length of the period. So
far the only condition is that it should be long enough to account for
representativemean and extremeRUE in all locations, and to detect any
trend in vegetation density. However, a theoretical framework for the
dependency of vegetation growth on climate variability would
considerably improve this requirement.

The above limitations are explained in terms of the approach
described, but in general terms they are shared by many empirical
approaches. The main problem is that existing functional models are
difficult if not impossible to parameterise for practical purposes, such
as land degradation surveillance. Therefore, for the time being, at
least, we will have to live with empirical models. We foresee that in
some immediate respects, our model may require attention. The use
of a significant number of time lags for extreme RUE instead of a fixed
interval of six months would surely enhance its discriminatory
capacity. And the representativeness of the study period could
possibly be approached by a GVF frequency analysis.

Because of their relevance, two aspects of themethodology reported
should be emphasized. First, it should be considered asa language rather
than as a self-contained model with fixed steps. The whole is more
important here than its individual parts, which may be replaced or
upgraded depending on the intended application. For example,
detrending observed RUE from aridity is more important than the use
of the mean instead of summatory values of the selected vegetation
index as an approach to the NPP. Another aspect that could easily be
adapted is the specification of assessment categories. For example, lack
of knowledge of the study area might make it advisable to use the
within-range combination as a relative reference, and call it simply
‘normal’ rather than ‘good condition’ as we have done. And second, the
nature of the data ismore important than any concrete data product. For
example, MEDOKADS-GVFwas used for this application for the reasons
explained in Section 2, but GIMMS-NDVI might be used for a different
area if it were considered appropriate. The important point here is that
consistent and reliable archived time–series are used according to the
general requirements formulated in Section 2.

The Iberian Peninsula was a challenging area to use as a benchmark.
As described in the data section, it is a large and complex territory with
many sources of land condition variation that operate inmany cases at a
finer spatial resolution than the one used here. Nevertheless, themodel
succeeded in detecting interpretable patterns. In very general terms, it
shows land to be healthier than expected, with focalised spots of
ongoing degradation associated with current or recent intensive land
use. Static or positive vegetation growth rates were detected almost
everywhere, including Mediterranean areas that were undergoing
increased aridification during the study period. The model would
therefore depict a landscape matrix in which natural vegetation and
areas of inherited desertification are interwoven in a mosaic of static,
resilient or thriving patches. Comparatively smaller areas of intense
economic development embedded in it would appear, grow, over-grow
and decay at a much faster pace than their surrounding landscape.
Perhaps themost striking fact detected in this work was that degrading
or static trends prevail in degraded or unusually degraded land, whilst
trends to improve are represented most in land in good or unusually
good condition. This suggests an irreversible divergency in landscape
evolution that supports the perceived drama of desertification and is a
warning not to overlook degradation hot spots. This will no doubt be a
priority target for future work.
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