LETTERS

edited by Jennifer Sills

 Forgotten Biodiversity in Desert Ecosystems

AS THE WORLD’S GOVERNMENTS CONGREGATE FOR THE UNITED NATIONS CONFERENCE ON Sustainable Development (Rio+20), we call on them to address one of the greatest oversights in conservation in recent years: the neglect of desert ecosystems. Deserts cover 17% of the world’s land mass and harbor surprisingly high biodiversity (1), including some of the most endangered species in the world (2). They are also home to 6% of the world’s population (3), including some of the poorest and most marginalized people in the world (4), who depend on deserts to deliver sustainable ecosystem services in a changing climate. Deserts and other dryland ecosystems currently harbor almost one-third of terrestrial global carbon stock (5), with further potential for carbon sequestration through improved land management. Furthermore, desert genetic biodiversity is key to improving dryland agricultural productivity (6).

Over the past two decades, however, conservationists have argued that targeting funding at tropical forests and other “biodiversity hotspots” maximizes the number of species conserved per conservation dollar and contributes to climate change mitigation by reducing greenhouse gas emissions from forest loss and degradation (7, 8). Consistent with these goals, between 1992 and 2008 only 1% of Darwin Initiative funding went to projects in deserts, compared with 24% to forests (9). Similarly, between 1991 and 2009 only 11% of Global Environment Facility funding to Africa went to Saharan nations (10). Lack of financial support is mirrored by lack of scientific information: Between 2000 and 2011, most scientific publications in ecology focused on forest biomes (67%) compared with deserts (9%) (11).

We call on governments to reverse the historic neglect of deserts and include them with forests at the top of the agenda at Rio+20; to support the UN Convention on Combating Desertification minimum target of halting land degradation; and to set a clear target for restoration of desert ecosystems to benefit biodiversity and people.

1Institute of Zoology, Zoological Society of London, London NW1 4RY, UK. 2Wildlife Conservation Society, Bronx Zoo, Bronx, NY 10460, USA. 3Bratz Park, 279947, Sin-gapore. 4Conservation Programmes, Zoological Society of London, London NW1 4RY, UK. 5Estación Experimental de Zonas Aridas (EEZA), CSIC, Carretera de Sacramento nºn, 04120-La Caña de San Urbano, Almería, Spain. 6Department of Biology, University of Hull, Kingdom of Saudi Arabia. 7Katherine Protectorate, Nature Conservation Section, Egyptian Environmental Affairs Agency, EEAA, Cairo, Egypt. 8Office National du Parc Culturel du Tassili n’Ajjer, BP. 11, Djazen 33100, Algeria. 9Laboratoire d’Ecologie et Environnement, Faculté des Sciences de la Nature et de la Vie, Université de Béjaïa, Route Targa Ouzoummer, 06000, Béjaïa, Algeria. 10Nature Conservation Department, Environmental General Authority (EGA), Tripoli, Libya. 11Royal Belgian Institute of Natural Sciences, 1000 Bruxelles, Belgium. 12Department of Biology and Biotechnologies, Università La Sapienza, 00185 Rome, Italy. 13IUCN/SSC Cat Specialist Group, c/o KORA, 3074 Muri, Switzerland. 14IGF Foundation, 75003 Paris, France. 15Bab Agnaw, 40 000 Marrakech, Morocco. 16BIOGEOMAPS, Umwelt-PR Gerngross e.U., Neubauagasse 4/7-9, A-1070 Vienna, Austria. 17Fondation Mohamed VI pour la Protection de l’Environnement, Temara 12 000, Morocco. 18Direction Générale des Forêts, Direction de la Protection de la Faune et de la Flore, Chef de Bureau de la Gestión et de la Préservation de la Faune, B.P. 292, Ben Aknoun Alger, Algeria. 19Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA. 20Big Cats Initiative, National Geographic Society, Washington, DC 20036–4688, USA. 21Tunisia Wildlife Conservation Society (TWCS), Département de Biologie, Faculté des Sciences de Tunis, Campus Universitaire 2092 Tunis, Tunisia. 22Ministère de l’Écologie, du Développement Durable et de l’Énergie, Sous-direction de la protection et de la valorisation des espèces et de leur milieu, Grande Arche de La Défense 92055, La Défense CEDEX, France. 23Division of Biology and Conservation Ecology, Manchester Metropolitan University, Manchester M1 5GD, UK. 24Santa Cruz, CA 95060, USA. 25Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA. 26Direction des Parcs Nationaux Réserves de Faune et de la Chasse, B.P. 905, N’djamen, Chad. 27Sahara Conservation Fund, 1148 L’Ile, Switzerland. 28Directeur du Parc National et Réserve de Biosphère de la Boucle du Basouélé, B.P. 275 Bamako, Mali. 29Direction de la Faune, de la Chasse et des Aires Protégées, B.P. 578, Niamey, Niger. 30Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney OX13 5QL, UK. 31Al Ain Zoo, Abu Dhabi, United Arab Emirates.

*To whom correspondence should be addressed. E-mail: s杜兰t@wcs.org

References and Notes
4. In this paper, we use the term “biodiversity” interchangeably with “species diversity.” We use “deserts” to refer to regions characterized by very low rainfall, very high temperature, and high evapotranspiration rates.
5. One-third of terrestrial global carbon stock is estimated to be in deserts (1). Desert ecosystems are also home to 6% of the world’s population (3), including some of the poorest and most marginalized people in the world (4).
6. Desert genetic biodiversity is key to improving dryland agricultural productivity (6).

Downloaded from www.sciencemag.org on June 18, 2012
LIFE IN SCIENCE

Potato Pedagogy

When I was in ninth grade, my class did a common experiment: We stained the starch in a potato with iodine. We found that the area of the potato exposed to the iodine-containing solution turns dark purple. I remember dejectedly staring at my purple potato and wondering what happened to the grand vision of science promised to me in television, films, and comic books. A scientist was supposed to go into a laboratory, mix some things together, generate a small fire (or at least some smoke), and end up with a cure for cancer.

Little did I know, I was indeed participating in this mythical idea of science: The simple iodine-staining reaction can be used to detect cervical cancer. The staining works because the normal cells of the cervix contain glycogen, a starch-like molecule, whereas cancerous cells do not. Iodine stains the normal cells brown but leaves the glycogen-deficient cancer cells white. Once exposed, the malignant cells can be excised. If the detected tumor is localized and accessible, it can be surgically removed in its entirety, curing the patient.

Understanding the real-world implications of the simple potato experiment would have relevance immediately. These students won’t have to wait 16 years like I did to realize that one purple potato is more impressive than any puff of smoke.

BILBrucker

Reference
1. More examples of these connections can be found at www.pacescience.org.

CORRECTIONS AND CLARIFICATIONS

News Focus: “Researchers set course to blockade ballast invaders” by D. Strain (11 May, p. 664). The article incorrectly referred to the Asian clam by an obsolete Latin name, Potamocorbula amurensis. It is currently cited in literature as Corbulom amurensis.

News & Analysis: “First spinoff of African math institute takes root in Senegal” by M. Ensersiek (4 May, p. 533). Neil Turok was quoted as saying that a network of AIMS institutes across Africa would cost $100 million over the next 10 years, or about 0.003% of Africa’s aid budget. Actually, $100 million is about 0.03% of that budget.

News Focus: “New lens offers scientist a brighter outlook” by A. Saini (30 March, p. 1562). The second sentence in the fourth paragraph stated that the Mesolens can image up to 0.22 millimeters below the surface of a specimen. The correct figure is 0.22 micrometers.

News Focus: “Partners prepare to pick a site for world’s biggest telescope” by D. Clery (30 March, p. 1564). To clarify, the images on pages 1564 and 1565 show artists’ conceptions of antennas planned for the proposed Square Kilometre Array; the actual antennas have not been built yet.

Plagiarism Prevention

M. BALTER (“REVIEWS’ DÉJÀ VU, FRENCH science sleuthing uncover plagiarized papers,” News & Analysis, 9 March, p. 1157) describes how a scientist recently published at least nine articles that largely or entirely duplicated papers written by others and was exposed only after we found one of our papers internally copied in a manuscript that both of us coincidentally received for review. What is remarkable here is not only the flagrant fraud, but the fact that six of these papers were published in scholarly journals only last year. Publishers can easily prevent publishing plagiarism by systematically running submitted manuscripts through software such as CrossCheck and eBlast (1, 2) or by running strings of words that are unlikely to be repeated by chance through search engines (3). It is evident that not all publishers systematically use these tools, despite the fact that plagiarism is common (1, 2). It is also noteworthy that these six 2011 papers—as well as the manuscript for review—are all from journals of publishers that Beall (4) lists as “predatory open-access scholarly publishers.” Such publishers “exploit the author-pays, Open-Access model for their own profit” and do not invest in quality control (4, 5). In this light, it is less surprising that papers escape plagiarism detection today. We argue that publishers that do not systematically use anti-plagiarism tools consciously take the risk of copyright infringement and of being accomplices in plagiarism. We encourage copyright holders to sue publishers of plagiarism for these offenses. When fines become a realistic threat, plagiarism prevention will become valuable even for predatory publishers.

P ATRIC K A. JANSEN* AND PIERRE-MICHEL FORGET* 1

1Department of Environmental Sciences, Wageningen University, Wageningen, Netherlands. 2Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama. 3Museum National d’Histoire Naturelle, Brouay, France.

*To whom correspondence should be addressed. E-mail: patrick.jansen@wur.nl.

References

EDITOR’S NOTE

This is an occasional feature highlighting some of the day-to-day humorous realities that face our readers. Can you top this? Submit your best stories at www.submit2science.org.

Predatory Publishers and Plagiarism Prevention

11. On 9 February 2012, we searched the ISI Web of Science (http://wok.wiley.com) for scientific articles under the subject area ecology that included the terms “desert” and “forest,” as well as other major biomes. We found 29,318 publications on forests and 4114 on deserts.